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|Evolutionary computing is the study of ro-

bust search algorithms based on the principles of evolu-

tion. An Evolutionary Algorithm (EA) searches a prob-

lem space in order to �nd regions containing good so-

lutions. Typically EA users judge the quality of their

algorithms by the quality of the solutions found. This

approach ignores the behavior of the search algorithm

and concentrates solely on the outcome. As a result,

the user is unaware of their algorithm's actions or how

the solutions were discovered. This paper describes how

search space visualizations can be used to facilitate the

user's understanding of evolutionary computing. A set

of examples are presented showing how the user can

take a \hands on" approach to explore the behavior

of their algorithms and interact with the evolutionary

search process.

| Software Visualization, Search Space Ma-

trices, Human-EA Interaction, Parameter Con�gura-

tion, Initialization Methods, Interactive Evolutionary

Algorithms.

(EAs) are robust search al-

gorithms based on the guiding evolutionary principle of

\survival of the �ttest". A typical EA works as follows:

a random initial population of possible solutions to a

problem is generated, these possible solutions are then

evaluated using a problem speci�c evaluation function,

and evolved to create a new generation of hopefully

better solutions. The evolutionary process (i.e. the

application of �tness biased selection and reproduction

operators) is repeated until an acceptable solution (or

set of solutions) to the problem is discovered.

(SV) has been de�ned as

\the use of the crafts of typography, graphic design,

animation and cinematography with modern human-

computer interaction technology to facilitate the hu-

man understanding and e�ective use of computer soft-

ware" [1]. The application of SV techniques to facilitate

the design and application of EAs has been receiving

growing attention during the last few years; [2], [3], [4],

[5], [6], [7], [8], and [9].

A recent study on the use of Genetic Algorithms

(GAs) concluded that GA users typically judge the

quality of their algorithms by the quality of the so-

lutions they �nd [10]. For example; by repeatedly run-

ning an algorithm to check that the solutions found

can be repeated, by comparing the GA's solutions with

those found by other techniques such as simulated an-

nealing, or by comparing the solutions with those of

benchmark examples. This \black-box" approach ig-

nores the behavior of the search algorithm and concen-

trates solely on the outcome. As a result, the user is

unaware of their algorithm's actions and how the solu-

tions are discovered.

It is proposed that through the use of interactive

SV techniques an EA designer can adopt a \hands on"

approach to evolutionary computing and gain a more

comprehensive understanding of their algorithm's be-

havior. This paper investigates how a new EA visual-

ization technique [9] can be applied to enable not only

the observation of an EA's search path, but also the

user's interactive exploration of the search space and

their possible involvement in the evolutionary process.

Section II describes the visualization technique. Sec-

tion III illustrates how this technique may be used to

explore the search space. Section IV examines some of

the new opportunities visualization o�ers the user for

interacting with and becoming a part of the evolution-

ary process. Section V concludes with a summary.

EAs search a problem space for a suitable solution

or set of solutions by sampling the problem space and

evaluating the sampled points. The sampling method

biases evolution toward those areas containing \�tter"

(i.e. better) solutions. The sample points are strings

of symbols referred to as \chromosomes". The individ-

ual symbols in a chromosome are called \alleles" and

each symbol's position in the chromosome is known as

its \locus". A problem-speci�c evaluation function is

used to evaluate each chromosome and assign a \�t-

ness rating". These populations of chromosomes and

their �tness ratings are the data used in EAs and they

are what must be visualized in order to understand an

algorithm's search behavior.

Fitness ratings are commonly visualized on a 2 di-

mensional line graph of �tness rating (on the y axis)

versus generation number (on the x axis). This visu-

alization provides an extremely useful insight into the
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Figure 1. An example of how a four bit binary matrix can be
constructed. Horizontal section's alleles are labeled with a
white background and vertical section's alleles are labeled
with a grey background. The Hamming distances between
neighbors are shown in italics.

variation in �tness ratings during evolution, particu-

larly when used to show the best, average and worst

ratings in each generation. However, visualizing the

sample points in the search space (i.e. the chromo-

somes) is less common and more problematic, due to

the high dimensional nature of most problem spaces.

Some techniques for displaying the population's chro-

mosomes are reviewed in [11] and [9].

The technique adopted here is referred to as the

\Search Space Matrix" [9]. In this approach a two

dimensional data matrix representing the complete

search space can be constructed by successively divid-

ing a blank data matrix into vertical and horizontal

sections and �lling each section with alternate alleles

from the coding alphabet. For example, a four bit bi-

nary search space containing 16 di�erent chromosomes,

0000 to 1111, can be represented on a 4 by 4 data ma-

trix as shown in Figure 1.

As the variables in a binary data set are of base 2 the

blank matrix is divided horizontally into two halves. In

the bottom half the �rst value of each entry is set to

0 and in the upper half it is set to 1. The matrix is

then split vertically with the second value in the �rst

two columns being set to 0, and the second value in

the second two columns being set to 1. This process

is repeated for the third and fourth values; the third

value with one row of 0s, one row of 1s, one row of 0s

and one row of 1s, and �nally the fourth value with one

column of 0s, one column of 1s, one column of 0s and

one column of 1s (see Figure 1).

The above matrix construction method can be ap-

plied to any genotypic search space, irrespective of the

length of the chromosome, or the number of possible al-

leles at each locus. Furthermore, rather than construct-

ing a data matrix of the complete search space prior to

visualization, the following direct linear equation can

be used to translate a (high-dimensional) chromosome

to a (low-dimensional) matrix coordinate:

=

Where is a chromosome of length . Each lo-

cus has di�erent values, and the contributing

weight of each locus is given by; = 1 and

= . is the position of each

allele in the coding alphabet for locus . is the num-

ber of matrix dimensions (typically 2 or 3) and is the

current position marker indexed from the right at = 1

in increments of .

This equation can also be reversed to translate any

coordinate back into its corresponding chromosome.

Although this technique was developed independently,

see [11], some similar approaches have since been dis-

covered; William Shine and Christoph Eick have pre-

sented a coverage map of a Genetic Algorithm's (GA's)

search using \quadcodes" [8], Ted Mihalisin, John Tim-

lin and John Schwegler have produced a \hierarchi-

cal axes" technique for visualizing multivariate func-

tions, data and distributions [12], and Je�rey LeBlanc,

Matthew Ward and Norman Wittels have proposed

a \dimensional stacking" technique for exploring N-

dimensional databases [13]. The remainder of this pa-

per presents �ndings not considered by any of these

similar techniques.

This section illustrates how the matrix representa-

tion described in the previous section can be used in

practice. Four aspects of exploring the search space are

examined here; visualizing the search path (III-A), the

problems associated with limited screen space (III-B),

the use of interactive controls for the visualization (III-

C), and the use of alternate projections of the search

space (III-D). An EA visualization environment called

\Gonzo" [14] is used here to produce a set of practical

examples.

A Genetic Algorithm (GA) evolving a solution to the

F1 test problem proposed by De Jong [15] is used here

as an example. This is a three dimensional problem

i.e. it has three variables, each variable has a value

between -5.12 and +5.12, and the evaluation function

simply sums the squared values of each variable. The

overall aim of the algorithm is to discover regions of

the search space that have a minimum �tness rating.
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Figure 2. The evolution of a Genetic Algorithm solving De

Jong F1 test problem. The four views show the search
space matrix visualizations of the chromosomes contained
in generation 0 (top left), 20 (top right), 40 (bottom left),
and 64 (bottom right). Each dot represents a chromosome.

Figure 3. A movie player control panel used to step through
an algorithm's evolutionary search path. Here the user can
jump back to the �rst generation ( generation 0), step

back N generations ( ), step back one generation ( 1),
play forward through the evolution a generation at a time
( ), step forward one generation (1 ), step forward N
generations ( ), or jump forward to the �nal generation
( ).

Figure 4. An image content controller used to identify the

range of data to be displayed in the search space visual-
ization. Two Alphasliders have been used here to identify
two ranges; the generation numbers 0 to 64, and �tness rat-
ings 0 to 10. The user can identify a range either by drag-
ging the end sections of the central bar or inputing speci�c

values. The range can then be moved either by dragging
the middle section of the central bar, clicking on the outer
scroll buttons on the left and right of the alphaslider, or by
clicking in the gap between the central bar and outer scroll
buttons.

The genetic representation used for each variable is

a 10 bit binary string, these are referred to as \genes",

hence each 30 bit chromosome is made up of 3 genes,

the �rst 10 bits (i.e. the �rst gene) refer to the �rst

variable, the second 10 bits to the second variable, and

the last 10 to the last variable. In order to map each

(genotypic) binary gene to a (phenotypic) value, the

gene is �rst translated into an integer, this is then di-

vided by one hundred and 5.12 is subtracted from the

result.

Figure 2 illustrates four of the sixty �ve steps taken

along the GAs search path (i.e. the chromosomes in

the population at generation 0, 20, 40 and 64). The

initial population is a random distribution of points

(Figure 2, top left) which converge over a number of

generations to a single region (Figure 2, bottom right).

This visualization can be used, either to present an on-

line (live) view of an algorithm's progress, or an o�-line

(post-mortem) view based on the stored output data of

the algorithm.

Typically, the resolution of the display medium (i.e.

a computer monitor) is less than the resolution of the

search space. In the example shown in Figure 2 the

visualization of a 30 bit binary search space is a 32,768

by 32,768 matrix. This far exceeds the resolution of

modern computer monitors and so raises the need for

the user to be able to zoom in to and out of the search

space visualization as well as pan across it.

Furthermore, by being able to use more than one

pixel to represent each chromosome additional informa-

tion can be presented. For example, the �tness rating

of each chromosome can be indicated either by the dot's

colour, size or value (i.e. gray scale). The schema struc-

ture of this representation also means that the user can

directly identify the alleles contained within regions of

the search space matrix (see section III-C, the schema

highlighting controller). Hence, good and bad schema

can be visually identi�ed.

Three control mechanisms are proposed here for the

exploration of an EA's search behavior; a \movie-

player" controller, an \image content" controller, and a

\schema highlighting" controller. A con-

troller enables the user to step backwards and forwards

along an algorithm's search path and examine each step

taken (see Figure 3).

As well as examining the evolution a step at a time,

an controller can be used to identify a

range of steps (i.e. generations) and �tness ratings, the

display is then refreshed, and only the chromosomes

contained within these ranges are displayed. Figure

4 shows how two \Alphasliders" [16], can be used to
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schema highlighting

D. Alternate Points of View

Figure 5. An example of how an image content controller can be
used to identify ranges of data to be displayed. This �gure
illustrates the same search data as that shown in Figure
2, i.e. a GA solving the De Jong F1 test problem. In this
view only the better chromosomes are shown from the GA's

search path (i.e. those with a �tness rating in the range 0
to 10).

Figure 6. A schema selectiondialog used to highlight the sections
of the search space containing a chosen schema of interest.

The three sets of four buttons represent the three genes in
a 12 bit version of De Jong's F1 test problem. The user can
click on any button to select the next allele in the selection
set, this set contains each allele in the coding alphabet for
that particular loci plus a wild card symbol (i.e. 01 ). The

schemata shown here identi�es the optimum solution to the
problem

Figure 7. An example of how the regions of the search space

containing a de�ned schemata can be highlighted. Here
a 12 bit version of the De Jong F1 test problem is used,
i.e. a 3D problem with variable values within the range
of -0.08 to +0.08, these are represented here by three four
bit binary genes. The de�ned values in the schemata are

highlighted by coloured strips in the top and right hand
legends of the matrix. A dashed line guide has been added
here to emphasize the location of the chosen schemata.

enable the user to view all of the chromosomes consid-

ered during an algorithm's evolution (i.e. generation 0

to 64), and to reduce that view to focus in on the bet-

ter chromosomes (i.e. those with �tness values in the

range 0 to 10). This image content controller is also

shown in Figure 5, this is being applied to illustrate

the same data as used previously in Figure 2 (i.e. the

output of a GA solving De Jong's F1 test problem).

This view emphasizes how genotypically distinct the

near-optimum solutions to this problem are.

Thirdly, the user can explore the schema contribu-

tions contained within their displayed search space us-

ing a controller (see Figure 6).

Here the user can de�ne a schemata of interest, in or-

der to highlight the corresponding columns and rows

of the matrix along which the de�ned values lie. Fig-

ure 7 shows how a schemata for a 12 bit (cut-down)

version of the De Jong F1 test problem can be high-

lighted. The de�ned values in the schemata are high-

lighted by coloured strips in the legend of the search

space visualization, each locus is indicated by a di�er-

ent colour. The location of the chromosome containing

all of the de�ned values is indicated by the areas in

the two legends containing the maximum number of

coloured strips. A dashed line guide has been added

to Figure 6 to emphasize the location of the chosen

schemata.

Using these three control mechanisms the user can;

follow the search path of their algorithm, identify the

�tter areas of the search space, and examine the im-

pact of individual building blocks on the chromosomes'

�tness ratings.

The projection used to identify each chromosome's

coordinate position in Figure 2 was ordered by the most

signi�cant bit from each gene (i.e. 1st gene 1st locus,

2nd gene 1st locus, 3rd gene 1st locus, 1st gene 2nd lo-

cus, etc.) rather than by the most signi�cant bit from

the chromosome (i.e. 1st gene 1st locus, 1st gene 2nd

locus, etc., as in Figure 1). Either projection is pos-

sible but as this problem is divided into three equally

weighted variables this projection was chosen as the

most appropriate. The ability to re-order the projec-

tion of the chromosomes loci means that the user can

view the relationships between the chromosomes alleles

from a number of di�erent \angles".
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C. Interactive EAs

Interactive Evolutionary Algorithms

Having identi�ed a technique for visualizing high-

dimensional genotypic search spaces (II) and illustrated

how that technique can be applied to realistic prob-

lems (III), the following section goes on to describe

how interaction is currently being used in evolutionary

computing and explores how this can be improved. Ex-

amples of three areas in which visualization facilitates

EA interaction are explained here: EA parameter con-

�guration, EA initialization, and interactive EAs. The

following three subsections identify the limitations of

the existing working practice in each of these areas be-

fore proposing an alternative.

The e�ects that di�erent parameter settings have on

an EA is an important aspect of the designer's expert

knowledge. Without an on-line search space visual-

ization the designer can only retrospectively analyze

the e�ects of their parameter settings from their al-

gorithm's output data. Several graphical EA environ-

ments permit the user to interactively vary the parame-

ter settings during evolution (for example \ "

[3], \ " [6]), however these tools do not visual-

ize the algorithm's search space and therefore it is still

di�cult to relate any parameter changes to the search

behavior of the algorithm. With a search space visual-

ization (such as [14]) the user can observe their algo-

rithm's evolution and monitor the e�ects of a variety of

parameter settings on their algorithm. This is not just

a useful pedagogical tool, it can also be applied to \�ne

tune" the behavior of an algorithm during evolution.

In a canonical GA (such as the SGA model described

by Goldberg [17]) the initial population is created as a

set of random valued chromosomes. Several alterna-

tive methods have since been explored in order to im-

prove the performance of such algorithms. Bramlette

[18] introduced an initialization method that selects

the best individuals from a set of randomly created

chromosomes. Kallel and Schoenauer [19] examined a

\ " method that ensures an even dis-

tribution of each allele in the coding alphabet through-

out the initial population, and a \ "

method that favors sequences of 0s and 1s in the chro-

mosomes of the initial population.

Any of these approaches would bene�t from visual-

ization. Bramlette's selection of the best \N" individ-

uals to create the initial population would be visually

reinforced with the state space matrix view presented

in section II. Similarly Kallel and Schoenauer's com-

parison of alternative initialization methods could be

supported by visualizing the individual search paths

taken by the same algorithm being applied a number

of times to the same problem but from a variety of

initial states.

An interactive visualization tool (such as Gonzo) can

also be used to create or edit the initial population for

an EA. As the translation method used in search space

matrices is a two way mapping (i.e. any chromosome

can be translated to a unique coordinate and any co-

ordinate can be translated to a unique chromosome)

the user can explore the search space and identify in-

dividuals for inclusion in the population. Hence, the

user can not only set the initial population, but also

re-introduce diversity or guide convergence toward in-

teresting areas in the search space at any stage during

evolution.

(IEAs) are a

sub-set of EAs whose origin has been attributed to

Richard Dawkins book \The Blind Watchmaker" [20].

The use of IEAs can be described as a two stage process

in which the user is �rst presented with every individ-

ual in the population in an appropriate (problem spe-

ci�c) form and then asked to evaluate each individual

based on its perceived merit [21]. Essentially the user

takes on the role of the evaluation function, removing

the need to formally specify the problem evaluation cri-

teria. This approach has been applied to several novel

problems such as graphic art [22], music [23] and knowl-

edge discovery in databases [21].

The current use of IEAs limits the user's view of

the search space to those points sampled by the cur-

rent population and provides no information relating

a chromosome's structure to the features of the result-

ing representation. Therefore, the user is unable to

do any form of credit assignment for a chromosome's

schemata. By combining the �rst step in this pro-

cess (i.e. displaying a chromosome in an appropriate

form) with a search space visualization, such as that

described in section II, the user can see each chromo-

some's place in the search space and judge an individual

not just on its phenotypic appearance but also on its

genotypic structure, and ability to contribute toward

new solutions. This enables the user to see the \big-

ger picture" outside of the sub-space sampled by the

current population.

Software visualization o�ers much more to evolution-

ary computing than a mere display: it o�ers the user an

opportunity to interactively explore evolutionary com-

puting. One such visualization technique, the \Search

Space Matrix", has been described. A tool using this
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technique was used in order to highlight how SV can

be applied to interactively explore the behavior of a

GA. By adopting more of a \hands on" approach to

evolutionary computing it is intended that a better un-

derstanding of our algorithm's search behavior will be

achieved.

In addition to exploring the search path of an algo-

rithm, this technique can be used to enable user inter-

action at any stage in the evolutionary process. Three

extensions to the current working practice of EA de-

signers have been proposed in the areas of; parameter

con�guration, population initialization, and interactive

evaluation. It is through the exploitation of interactive

visualization techniques, such as those presented here,

that people may further their understanding of EAs

and the additional bene�ts of \Human-EA Interaction"

may be achieved.

The use of SV to facilitate both the understanding

and e�ective use of evolutionary computing is the fo-

cus of a number of current research projects. This of-

fers new opportunities for those involved in evolution-

ary computing to interact with their algorithms during

evolution. However, little work on the e�cacy of this

approach has been done. Future work will involve em-

pirically assessing not only these forms of visualization,

but also the opportunities for human interaction and

intervention that they create.
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