Folksonomy Enrichment and Search

Sofia Angeletou, Marta Sabou, and Enrico Motta

Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom
{S.Angeletou,R.M.Sabou,E.Motta}@open.ac.uk

Abstract. The Semantic Web community has expressed its interest on
how the Semantic Web technology can be applied more efficiently in a
manner that supports real world applications. Additionally, the popular-
ity of social tagging systems has demonstrated a clear need for organi-
sation and more flexible ways of querying the user contributed content.
This work presents FLOR, a folksonomy enrichment algorithm, which
exploits a variety of knowledge sources to apply structure on the user
tagspaces. In addition, a query mechanism is presented demonstrating
how the enriched folksonomies structures can be interrogated by trans-
forming the user keyword queries on folksonomies to formal queries on
semantic structures. The first prototype of the FLOR enrichment algo-
rithm and a first instance of the query mechanism have been implemented
and a demonstration is available onlindl.

1 Introduction

The interaction between Web2.0 and Semantic Web has been given special atten-
tion by pioneers of both fields [2[45]. On the one hand, Semantic technology is
expected to solve folksonomies problems such as lack of structure, ambiguity, syn-
onymy, basic level variation, syntactical variation that may impede folksonomy
search either by returning few results but mainly, by not supporting meaningful
or representative result presentation. On the other hand, the socially derived
tagspaces and their emerging semantics are claimed to potentially provide valu-
able information for overcoming certain impediments of the Semantic Web such
as slow evolution of ontologies. The efforts to combine folksonomies and the Se-
mantic Web have followed two main lines of research, statistical methods based
on co-occurrence and explicit application of semantics on tags.

FLOR’s novelty mainly lies on its entirely automated nature. FLOR selects
relevant knowledge on the fly without pre-selection and user interference and
automatically enriches the tags with all the appropriate semantic information
available. In addition to the FLOR enrichment algorithm, we present a first
approach on interrogating the semantically enriched folksonomies to test the
Semantic Web usefulness in this context.

! http://flor.kmi.open.ac.uk

L. Aroyo et al. (Eds.): ESWC 2009, LNCS 5554, pp. 801-{805] 2009.
© Springer-Verlag Berlin Heidelberg 2009

http://flor.kmi.open.ac.uk

802 S. Angeletou, M. Sabou, and E. Motta

2 Technique

In the following we describe the FLOR enrichment algorithm that leads to se-
mantically structured folksonomies and the query mechanism to translate the
user queries into semantic queries on these structures.

2.1 FLOR Folksonomy Enrichment

FLOR is an algorithm that automatically transforms tagspaces into semantic
structures by making use of multiple knowledge sources. FLOR enrichment is
performed in four phases as depicted in Fig.[2l An earlier version of the algorithm
is explained in more detail in [1].

Input Lexical Processing Semantic Expansion | Semantic Enrichment | Semantic Aggregation Output

Dictionary Thesauri o CI’"“_"E FLOR Schema

tic Layer
Tagspace

g

Isolated
Tags

Lexical
‘ Isolafion

Nor

Sense
Definifion

Sem.
xpanded
Tagset

Entity

do
Relation
Selection Discovery

Online

Ontologies i

Sefn.

Sem.
Enriched
Tagset

Expansion

Tagset

Fig. 1. FLOR Phases

PHASE 1: Lexical Processing. The first step of this phase, Lexical Isola-
tion), uses a set of heuristics to identify the tags not to be further processed by
FLOR. Currently we isolate tags shorter than three characters, non-English tags
and tags containing numbers or special characters. The Lexical Normalisation
step produces a number of lexical representations for the tag, aiming to bridge
the naming conventions used in folksonomies, ontologies and other knowledge
resources.

PHASE 2: Sense Definition and Semantic Expansion. In the first step
of Phase 2, Sense Definition and Disambiguation, sense disambiguation
is performed by utilising WordNet based similarity techniques as explained in
[1]. Another issue this phase tries to address is the Semantic Web sparseness.
Expanding the tag with synonyms and lexical variations increases the possibility
of finding the correct Semantic Web Entity in Phase 3. We perform Semantic
Expansion for each tag, using WordNet.

PHASE 3: Semantic Enrichment. The third phase of FLOR identifies the
Semantic Web Entities (SWEs) that are relevant for each tag taking as input
the results of Phases 1 and 2. These SWEs are selected during the Entity
Discovery step by querying a gateway to online ontologies [3]. Finally in the
Entity Selection step we filter the SWEs in order to identify the ones that
correspond to the relevant tags.

Folksonomy Enrichment and Search 803

PHASE 4: Semantic Aggregation. The final phase returns the output of
FLOR, a semantic structure with the definitions of the concepts corresponding
to each tag and the relations of all the tags within the input tagspace. This is
done by incrementally aggregating the enrichments of individual tagsets. The
first step of Phase 4, the Instantiation, is executed after a tagset has been
enriched and is the step where each individually enriched tagset is integrated into
a final schema with which we represent the concepts of Resource isTaggedWith
Tag hasDefinition Sense isEnrichedWith Semantic (Web) Entity. Finally,
Relation Discovery is the last step of FLOR and returns the semantic layer
linking together the tags. The actual relation discovery happens for the senses
of the tags; among tags of a specific tagset but also cross-tagset, among tags
of the overall tagspace (see Fig. [Il). The Scarlet relation discovery algorithm
([6]) will be applied here. This step adds the statement: Semantic (Web) Entity
isRelatedto Semantic (Web) Entity to the schema. The property isRelatedto
can be any type of Object Property.

2.2 Querying Mechanism

At the moment the query mechanism supports only single keyword queries. As
a next step we plan to support multiple keyword queries which will require a
more complex query mechanism. The current demonstration performs search on
a subset of Flickr resources (photos). The three different possible result sets for
each query are Tags, Synonyms - Lexicals and Related.

The Tags (A) result set contains all the photos that have been tagged with
the query keyword explicitly and show the same results as retrieved by a tag
query in Flickr. The retrieval of this set is straightforward.

The Synonyms - Lexicals (B) set of results contains the photos that are
tagged with synonyms or lexical variations of the query keyword. The notions
of Synonym and Lexical are supported by our schema as Datatype Properties
of a Sense. For example, Sense_(Leaf) hasSynonym “Foliage” and hasLexical
“Leaves”. The process of selecting this result set first identifies the senses that
have the query keyword as a value in the hasSynonym or hasLexical properties.
The mapping then to the tags and resources is straightforward.

The Related (C) set contains photos that are tagged with a sense that relates
to keyword in the following ways.

— SubClass, tagged with subclasses of the query keyword.

— SuperClass, tagged with superclasses of the query keyword

Sibling, tagged with senses sharing the same superclasses with the keyword

— Generic Relation, tagged with senses that relate with the keyword with
all other possible relations (excluding disjointness) for example, meronymy.

More specifically, the process of selecting the set Related (C) first maps the
keyword query to a sense in the same manner as in Synonyms - Lexicals (B).
Then, the related sense is discovered according to the above cases and the inverse
process is followed to identify tags and photos. This means that we retrieve all
the photos that are tagged with synonyms or lexicals of the previously discovered
related sense.

804 S. Angeletou, M. Sabou, and E. Motta

3 Implementation

The first prototype has been implemented and evaluated on a dataset from
Flickr. Currently we have partly implemented Phase 4 of FLOR (Semantic Ag-
gregation) and only the SubClass case of Related (C) from the query mechanism.
With regards to the data, we selected a Flickr subset, from the group Plant [di-
rectory]E (5.943 members and 63.454 photos on 24-07-2008). We then randomly
selected 12233 photos with a total of 89446 tags. For the first evaluation of this
setup 11 users asked the system queries related to plants (45 queries in total) and
retrieved 36% additional results to the ones that are returned without
the FLOR enrichment with a mean precision of 94%.

4 Demonstration Plan

This demo will focus on showcasing the functionality of querying on a Flickr
dataset enriched by FLOR as described. The enrichment algorithm will be ex-
plained and demonstrated for each case of user query and how the FLOR results
are obtained in detail. The basic part of the demonstration will be performed
on the Web application implementing the setup described in Section

1 photos for (asparagus) (vegetable) (veggie)

asparagus

4 photos for (onion) (onions) (vegetable) (vegagie)

onion onion \

(25) photos were tagged with (5) photos were tagged with a (45) photos were tagged with a

VEGETABLE see all synonym or a lexical of VEGETAELE subclass of VEGETAELE see all

vegetable vegetable 4
artichoke
legume (C)

(B) vegetables

vegetables

Fig. 2. Demonstration Screens

The initial page of the application consists of a search box. The first result page
is broken down into three columns as shown in the left part of Figll Column (A)
presents the photos that are explicitly tagged with the query keyword, e.g.,

2http://www.flickr.com/groups/plantdirectory/

http://www.flickr.com/groups/plantdirectory/

Folksonomy Enrichment and Search 805

vegetable and the results are exactly the same as the ones returned with the
current tag-based search of folksonomies. Column(B) presents the results that
are tagged with synonyms or different lexical representations of the query term
e.g., veggies, vegetables. Finally, column (C) presents the photos that are
tagged with subclasses of the query keyword e.g., legume, artichoke.

To avoid visual clutter, a maximum of ten photos are presented in each col-
umn. If a column contains more than ten responses, these can be accessed by
clicking on “see all”. For the first two columns this will simply lead to a “bag”
display of photos. In the case of column (C), the “see all” page categorises
the photos under each subclass of the query keyword as demonstrated in the
top-right part of Figl2

Under each photo we present the tag which was mapped against the query
term. For example, in column (C) of Fig. 2lthe tags legume and artichoke were
found as subclasses of vegetable. By clicking on a photo the user obtains a
larger view of it with all its associated tags.

We expect the visitor to learn how the integration of Semantic Web with
Web2.0 is realised and experience a real world application that is useful to the
casual web user and user-friendly.

Acknowledgements

This work was funded by the NeOn project sponsored under EC grant number
IST-FF6-027595.

References

1. Angeletou, S., Sabou, M., Motta, E.: Semantically enriching folksonomies with
FLOR. In: Proc. of the 5th ESWC: CISWeb, Tenerife, Spain (2008)

2. Benjamins, R., Davies, J., Baeza-Yates, R., Mika, P., Zaragoza, H., Greaves, M.,
Gomez-Perez, J., Contreras, J., Domingue, J., Fensel, D.: Near-term prospects for
semantic technologies. IEEE Intelligent Systems 23, 76-88 (2008)

3. d’Aquin, M., Sabou, M., Dzbor, M., Baldassarre, C., Gridinoc, L., Angeletou, S.,
Motta, E.: Watson: A gateway for the semantic web. In: 4th ESWC, Innsbruck,
Austria (2007)

4. Greaves, M.: Semantic Web 2.0. IEEE Intelligent Systems 22(2), 94-96 (2007)

5. Lassila, O., Hendler, J.: Embracing “Web 3.0”. IEEE Internet Computing 11(3),
90-93 (2007)

6. Sabou, M., d’Aquin, M., Motta, E.: Exploring the semantic web as background
knowledge for ontology matching. Journal of Data Semantics (2008)

	Folksonomy Enrichment and Search
	Introduction
	Technique
	FLOR Folksonomy Enrichment
	Querying Mechanism

	Implementation
	Demonstration Plan

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

