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Abstract.  In this paper we investigate the reuse of tasks and problem solving
methods and we propose a model of how to organize a library of reusable
components for knowledge based systems. In our approach we first describe a
class of problems by means of a task ontology. Then we instantiate a generic
model of problem solving as search in terms of the concepts in the task ontology,
to derive a task-specific, but method-independent, problem solving model.
Individual problem solving methods can then be (re-)constructed from the generic
problem solving model through a process of ontology/method specialization and
configuration.  The resulting library of reusable components enjoys a clear
theoretical basis and has been tested successfully on a number of applications.  In
the paper we illustrate the approach in the area of parametric design.

1. INTRODUCTION

A problem solving method (PSM) is a domain-independent specification of the reasoning
process of a knowledge-based system (KBS).  PSMs play an important role in both the
analysis and design phases of the KBS development life-cycle.  In particular, they can be used
as i) model-based templates to guide the knowledge acquisition (KA) process (van Heijst et al.,
1992) and ii) to develop robust and maintainable applications by reuse (Marcus, 1988; Runkel
et al., 1996; Motta, 1998b).
While all PSMs are obviously designed with some class of problems in mind, it is common to
find in the literature a distinction between two main categories of PSMs, which, somewhat
ambiguously, are termed task-specific and task-independent.  The former are PSMs designed to
tackle a particular class of KBS problems - e.g. diagnosis or configuration design - and reflect
such a commitment through the use of a problem-specific terminology.  Examples of task-
specific PSMs include the suite of diagnostic PSMs developed by Benjamins (1993) and the
PSMs for design described by Chandrasekaran (1990).  Throughout this paper we will use the
term problem type (Breuker and van de Velde, 1994) to refer to the high-level generic tasks,
e.g. parametric design or fault diagnosis, which are tackled by task-specific PSMs.
Task-independent PSMs do not subscribe to a problem-type-specific terminology but specify
reasoning steps either in terms of a generic problem solving paradigm, such as search (Newell
and Simon, 1976), or in terms of the epistemological properties of the domain knowledge base
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(Beys et al., 1996)1.  Hence, task-independent PSMs tackle problems characterized at a higher
level of abstraction than task-specific ones.  For instance, the A* search algorithm (Nilsson,
1980) can be viewed as a PSM for finding the cheapest path - according to some criterion - to a
solution state in a state space.
Both approaches, as pursued in recent years, suffer from problems.  Task-independent PSMs
do not provide enough support for knowledge acquisition and, as discussed by Klinker et al.
(1991), are more difficult to reuse than task-specific ones.  On the other hand a task-specific
terminology limits the possibility of reusing PSMs across classes of tasks and can impede our
understanding of what a PSM really does.  For example, in a number of papers (Zdrahal and
Motta, 1995, 1996; Motta and Zdrahal, 1996; Motta, 1998b) we have analysed the
Propose&Revise PSM developed by Marcus and McDermott (1989) and shown that a task-
independent characterization of this PSM as a search algorithm makes it possible not only to
clarify the computational basis for the knowledge structures employed by the PSM, but also to
explain its incomplete nature (see also discussion in section 4.1.2).
Thus, we believe there is a need for an approach to PSM specification and library organization
which can reconcile the advantages in terms of KA and reuse afforded by task-specific
formulations with the clear theoretical foundations and problem generality provided by task-
independent problem solving paradigms, such as search.  Specifically, our approach relies on
the following three key ideas:

• We use different kinds of formal ontologies (Gruber, 1993) to specify the generic
structure of a class of problems (task ontologies) and the knowledge requirements of
PSMs (method ontologies).

• All problem solving methods applicable to a class of problems, say P, are characterized
as refinements of a common, task-specific, but method-generic problem solving model2.
This model comprises a set of generic problem solving components, generic (sub-)tasks
and (sub-)methods, which provide the high-level building blocks necessary to construct
PSMs applicable to P.  The model is associated with a generic method ontology, which
expresses the minimal knowledge requirements which have to be satisfied by a PSM
applicable to P.

• In order to bridge the gap between the method and task 'dimensions' and to provide a
task-independent foundation to a task-specific library of PSMs, the construction of the
generic problem solving model discussed in the previous bullet, say M, is driven by a
task ontology and by the selection of a generic problem solving paradigm.  In particular
we make use of the search paradigm.  The advantage of this choice is that it does not
constrain the range of PSMs which can be modelled as specializations of the model M -
i.e. all PSMs can be seen as performing search3.

Thus, as shown in figure 1, PSM development in our approach can be characterized as a three-
stage process:

1. Formalize the problem type by defining the appropriate task ontology.

1 Specifically, Beys et al. show that the behaviour of a diagnostic method such as Cover&Differentiate
(Eshelman, 1988), which is normally described using a diagnosis-oriented terminology, can be reformulated
as a graph-searching algorithm and its domain assumptions expressed as statements on the topological
structure of the graph.

2 Here we use the term 'problem solving model', rather than 'problem solving method', to emphasize that, like
generic algorithmic schemas in conventional software, this model may not be fully specified - e.g. it may
abstract from specific control regimes.

3 This statement does not imply that a problem solver effectively has to search (i.e. that it has to examine
possible alternative paths to a solution).  It only emphasizes that all problem solving behaviour can be
modelled as a search through a state space.  Hence, in contrast with approaches such as Soar (Laird et al.,
1987), we do not use search as the basis for a computational problem solving architecture, but simply as a
'methodological device', which allows us to move from a problem specification to a generic problem
solving model, without introducing additional problem solving commitments.
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2. Construct a generic problem solving model associated with a problem type by
instantiating a generic model of search in terms of the task ontology defined at step 1.

3. Characterize individual PSMs (or PSM components) as specializations/configurations of
the task-specific, search-based problem solving model developed at step 2.

(def-class parametric-design ...)
(def-relation design-solution...)
(def-class parameter.....)
(def-class constraint....)
.........
...............) 

Task Ontology Problem Solving as Search

(def-class design-operator...)
(def-class design-state....)
(def-relation state-transition...)
(def-class design-focus......)
(def-class design-context....)
.........
...............) 

Generic Method Ontology Generic Problem Solving Model

Problem Solving Method 1 Problem Solving Method n

..........

&

Parametric-Design

Initialize-Design-Space Select-Design-State

New-Design-State

Generic-Parametric-Design

Extend-design-state

Select-Design-State-M1

Design-from-State

Select-Design-State-M2

Gen-Design-Control

Generate-State-Succcessor

Collect-State-FociDesign-From-ContextSelect-Design-Context

....

....

....

....

Parametric-Design

Initialize-Design-Space Select-Design-State

New-Design-State

Generic-Parametric-Design

Extend-design-state

Select-Design-State-M1

Design-from-State

Gen-Design-Control

Generate-State-Succcessor

Collect-State-FociDesign-From-ContextSelect-Design-Context

....

....

....

....

Parametric-Design

Initialize-Design-Space Select-Design-State

New-Design-State

Generic-Parametric-Design

Extend-design-state

Design-from-State

Select-Design-State-M2

Gen-Design-Control

Generate-State-Succcessor

Collect-State-FociDesign-From-ContextSelect-Design-Context

....

....

....

....

Figure 1.  PSMs as refinements of generic problem solving model

In this paper we will illustrate these ideas in the context of a library of reusable components for
parametric design problems (Wielinga et al., 1995; Motta and Zdrahal, 1996).  The rest of the
paper is organized as follows.  In the next section we introduce the class of parametric design
problems.  In section 3 we present a generic model of parametric design problem solving,
obtained by instantiating the search paradigm in terms of the parametric design task ontology.
Then, in section 4, we will illustrate a library of PSMs for parametric design defined as
specializations of the generic model presented in section 3.  Section 5 discusses our approach to
application development by reuse and briefly discusses some application models developed
using our library of reusable components.  Finally, in sections 6 and 7 we compare our work
with alternative approaches to developing and organizing PSM libraries and we highlight some
issues for future research.
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2.  A TASK ONTOLOGY FOR PARAMETRIC DESIGN PROBLEMS

2.1 Characterizing a class of problems
Problem solving activities concentrate on a limited number of entities in the world.  The set of
these objects, which can be either abstract or concrete, is called the universe of discourse.
In the universe of discourse the problem is characterized by at least two distinguishable states:
the initial state and the final (goal) state. For example, the initial state of a medical diagnostic
problem specifies all observable symptoms, a class of diseases and the patient’s symptoms.
The final state is characterized by an association of the symptoms with a particular disease.  The
key to defining generic and reusable problem specifications is that similar problems can be
characterized in terms of a common, abstract universe of discourse, associated with a problem
type.
A reusable conceptualization of a universe of discourse is called an ontology (Gruber, 1993).
Here we use task ontologies to conceptualize the abstract universe of discourse associated with
a problem type.  In what follows we will illustrate a task ontology for parametric design
problems.

2.2 Design as constructive problem solving
In general terms, design can be characterised as the process of producing a blueprint for an
artefact from an input specification which includes a set of requirements, a set of constraints
and some building blocks.  Different classes of design problems can be identified by making
different assumptions on the nature of the available building blocks.  In particular, design
problems where the set of available building blocks is fixed and known at the start of the design
process are called configuration design problems (Stefik, 1995).  As discussed by Mittal and
Frayman (1989) the complexity of a configuration design problem can be greatly decreased by
introducing assumptions about the structure of admissible solutions, such as the assumption
that all solutions obey the same functional template.  A stronger assumption postulates the
existence of a parametrized solution template: this assumption reduces the general design
problem to one of assigning values to design parameters in accordance with the given
requirements, constraints, and preferences.  This class of design problems is called parametric
design (Wielinga et al., 1995; Motta and Zdrahal, 1996).4

2.3 Characterising parametric design tasks
A parametric design application can be defined as a mapping from a six-tuple <P, Vr, C, R, Pr,
cf> to a set of solution design models, {Dsol-1,......., Dsol-n}, where

P is a set of parameters, {p1, ... , pn};
Vr is a set of value ranges, {V1, ...  Vn}, where Vi = {vi1, ... , vil }
C is a set of constraints, {c1, ... , cm};
R is a set of requirements, {r1, ... , rk};
Pr is a set of preferences, {pr1, ... , prj};
cf is a cost function;

4 It is important to emphasize that our discussion here is only concerned with the formal parametric design
problem - how to construct a solution design from a parametric design task specification.  Naturally, there is
more to design than deriving design models from input specifications.  In particular, acquiring a task
specification is itself a complex collaborative process, during which various stakeholders negotiate a
common view of a design problem (Ehn, 1989; Greenbaum and Kyung, 1991).  Moreover, this negotiation
process, often called problem framing (Schoen, 1983), is typically an iterative process, which is intertwined
with both problem solving and design evaluation (Bonnardel and Sumner, 1996).  Hence, the fact that the
work presented here is concerned exclusively with the formal design problem should not be taken as
implying that the other aspects of the design process are less important, or that the design life-cycle can be
characterized by means of a waterfall model, where design formulation and problem solving are carried out
sequentially.
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Dk is a design model, {<pi, vij>}.
These concepts are discussed in the sections below.
2.3.1. Parameters and value ranges
A parameter specifies a primitive element of a design model.  Each parameter, pi, is associated
with a value range, Vi, which specifies the set of legal values which can be assigned to pi.
2.3.2. Constraints and requirements
Constraints specify conditions which must not be violated by a design.  For instance, the VT
elevator design application (Yost and Rothenfluh, 1996) includes constraints such as "The cab
height must be between 84 and 240 inches, inclusive".  Requirements specify properties which
have to be satisfied by a solution - e.g. "the elevator should carry at least five people".  In our
formalization of parametric design problems we only enforce a conceptual distinction between
requirements and constraints, rather than a logical one5.  As pointed out by Wielinga et al.
(1995), requirements have a ‘positive’ connotation, in the sense that they describe the desired
properties of the target artefact, while constraints have a ‘negative’ connotation, in the sense
that they limit the space of admissible designs, by expressing the applicable technological,
physical, or legal restrictions.  Moreover, constraints normally specify case-independent
restrictions, while requirements tend to be case-specific.  In general, we can say that both
requirements and constraints express design prescriptions, which are essential to distinguish
between solution and non-solution design models.
2.3.3. Preferences
Preferences describe task knowledge which ranks design models in accordance with some
viewpoint.  For instance, statements such as “Secretaries should be as close as possible to the
head of group” and “Project synergy should be maximised”, which are included in the
specification of the Sisyphus-I office allocation problem (Linster, 1994), can be modelled as
preferences.  Formally, a preference is a relation of partial order defined on the space of design
models. Different viewpoints correspond to different relations of partial order.  Obviously, the
partial order over design models determined by one preference may differ from that determined
by another; in some cases different viewpoints may contradict each other.
2.3.4. Global cost function
A parametric design task specification typically includes a number of preferences which model
various viewpoints for ranking solutions. In order to integrate the multiple preference criteria
uncovered during the domain analysis we introduce the notion of global preference. A global
preference, say gp, is a partial order relation which combines individual preferences in order to
provide a uniform viewpoint for ranking design models6.  For convenience, given that it is both
common and useful to talk about the cost of a design model, we introduce a global cost function
cf such that cf(Dj) ≤ cf(Dk) iff <Dj, Dk> ∈  gp. The value of the cost function is associated with
the design model and therefore for any two design models the relation gp can be evaluated by
comparing their associated costs.
2.3.5. Design models
A design model is a set of pairs <pi, vij> where pi is a parameter and vij  is the value assigned to
pi in the design model in question.  We distinguish between different types of design models.

• A design model Dk is complete if each parameter in P has a value in Dk.
• A design model is consistent if it does not violate any constraint in C.

5 In general there is also a logical distinction between requirements and constraints: while requirements must
be satisfied by a solution, constraints should simply not be violated (Wielinga et al., 1995).  Because our
characterization of parametric design problems assumes complete solution models, constraints are always
applicable to solution models.  Therefore the condition 'constraint not violated' is the same as 'constraint
satisfied'.

6 Because individual preferences might not be mutually consistent, the process of acquiring a global preference
is not simply concerned with the logical combination of multiple partial orders, but requires the various
stakeholders in the the design process to negotiate a common criterion for ranking design models.
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• A design model is suitable if it satisfies all requirements in R.
• A design model is valid if it is suitable and consistent.
• A design model is a solution if it is complete and valid.
• A design model Dsol-k is an optimal solution if it is a solution and there is no other

solution Dsol-j, such that cf(Dsol-j) < cf(Dsol-k).
In general, the goal of a parametric design problem is to find a solution design model.  Of
course, this goal can be further specialised for particular classes of parametric design
applications, e.g. by requiring that an optimal solution be found.

2.4 The parametric design task ontology
In the previous section we have briefly described a specification of the class of parametric
design problems.  These ideas have been formally represented in a parametric design task
ontology, which is part of our library of reusable modelling components.  This ontology has
been modelled in OCML (Motta, 1998a; 1998b), an operational modelling language, which
provides constructs for specifying relations, functions, classes, instances, rules and control
structures.  Operationality is supported by means of a function interpreter, a control interpreter,
and a proof system.  The latter integrates inheritance and function evaluation with a backward
chaining inference engine.  OCML modelling is supported by a library of reusable definitions,
which is structured according to the basic categories of our application modelling framework7,
i.e. task, method, domain and application.  The library also relies on a number of base
ontologies, which provide definitions for basic modelling concepts such as numbers, sets,
relations, tasks, methods, roles, etc.  Throughout the rest of this paper we will introduce
OCML constructs ‘opportunistically’ when needed to explain relevant definitions.  A complete
description of the language can be found in (Motta, 1998b).
The parametric design task ontology comprises about 40 definitions and is fully described in
(Motta, 1998b).  Here we will illustrate the main modelling decisions taken when building the
ontology.
2.4.1. Modelling the parametric design generic task
The OCML definition of the class of parametric design tasks is as follows:

7 This is discussed in section 5.1.
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(def-class parametric-design (design-task) ?task
  ((has-input-role :value has-parameters
                   :value has-constraints
                   :value has-requirements
                   :value has-cost-function
                   :value has-cost-algebra
                   :value has-preferences)
   (has-output-role :value has-design-model :cardinality 1)
   (has-design-model :type design-model :max-cardinality 1)
   (has-parameters :type list :cardinality 1)
   (has-constraints :type list :max-cardinality 1)
   (has-requirements :type list :max-cardinality 1)
   (has-preferences :type list :max-cardinality 1)
   (has-cost-function :type cost-function :max-cardinality 1)
   (has-cost-algebra :default-value '(+ - <) :cardinality 1)

   (has-goal-expression
    :type legal-parametric-design-goal
    :default-value (kappa (?task ?design-model)
                      (design-model-solution ?design-model
                                             ?task)))))

(def-relation LEGAL-PARAMETRIC-DESIGN-GOAL(?rel)
  :iff-def (and (binary-relation ?rel)
                (subrelation-of ?rel
                                (inverse design-model-solution))))

A class of generic tasks is characterised in the OCML base ontology in terms of its input roles,
output role, and goal expression.  Roles specify the knowledge structures which are input or
output to a task.  A goal expression specifies a condition which can be used to determine
whether or not a task has been carried out successfully.  More precisely, the slot has-goal-
expression  in an OCML task indicates a binary relation which takes as first argument a task
instance (e.g. a parametric design problem) and as second a possible solution to the task.
Thus, the goal of a task, say ?t, is satisfied by a particular value, say ?v, if and only if the
associated binary relation is satisfied by the pair <?t, ?v>.  Roles are represented as task slots,
as well as being explicitly listed either as values of slot has-input-role or has-output-
role .
The definition of the parametric design class given above follows straightforwardly from the
discussion in section 2.3: there are only two aspects which deserve attention.  The first one
concerns the inclusion among the input roles of a cost algebra.  This is a triple which specifies
the functions and relation to be used to merge and subtract design costs and to compare the
costs of different design models.  The second one concerns the specification of the goal of a
parametric design problem.  As pointed out earlier, the goal of a parametric design problem is to
find a valid and complete design model.  However, in practical design applications optimisation
aspects are typically very important: given a set of requirements and constraints we normally
wish to find the cheapest design which does the job.  Therefore our definition specifies only a
default goal for parametric design problems (to find a solution design model) and imposes a
type constraint that a parametric design goal should be a sub-relation of relation design-
model-solution 8.  In other words, this definition only imposes a minimal requirement on the
characteristics of a solution design model.  Subclasses or instances of this class are free to
impose further restrictions on the space of feasible solutions.

8 The default goal of the task is represented by means of a kappa expression.  This is a modelling construct
allowing the specification of anonymous relations, much like lambda expressions support the specification
of anonymous functions.
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The relation design-model-solution  models the relevant notion defined in section 2.3.5: a
design model is a solution if and only if it is complete and valid.  This relation is formally
defined as follows.

(def-relation DESIGN-MODEL-SOLUTION (?dm ?task)
  :iff-def (and (design-model-complete ?dm
                  (role-value ?task has-parameters))
                (design-model-valid ?dm
                  (role-value ?task has-constraints)
                  (role-value ?task has-requirements))))

(def-relation DESIGN-MODEL-COMPLETE (?dm ?parameters)
   "A design model is complete if all the parameters are bound"
   :iff-def (not (exists ?x
                         (and (member ?x ?parameters)
                              (unbound-parameter ?x ?dm)))))

(def-relation DESIGN-MODEL-VALID (?dm ?constraints ?reqs)
  :iff-def (and (design-model-consistent  ?dm ?constraints)
                (design-model-suitable  ?dm ?reqs)))

Similarly, we can specify the other relations used in the above definitions.
2.4.2. Parameters and parameter values
We have seen that the goal of a parametric design task is to find an assignment of values to
parameters which satisfies the given requirements and constraints.  The association between
parameters and values is typically modelled as a unary function (or binary relation) which
associates a parameter directly to its value (Gruber et al., 1996).  However, we have found that
in practice a reasoner might handle several design models at the same time (i.e. several
mappings between a parameter and a set of values) and therefore in our ontology this
association is not direct but it is mediated by the chosen design model.  The definition below
formalizes this approach, by stating that a parameter ?p has value ?v in a design model ?dm if
and only if the pair <?p, ?v> is an element of ?dm.  The :constraint  keyword is used to
specify that ?v should be an element of the value range associated with ?p.

(def-relation HAS-VALUE (?p ?v ?dm)
  "Parameters have values w.r.t a particular design model"
  :iff-def (and (parameter ?p)
                (design-model ?dm)
                (element-of (?p . ?v) ?dm))
  :constraint (and (has-value-range ?p ?vr)
                   (element-of ?v ?vr)))

2.4.3. Modelling constraints and requirements.
As already pointed out, in our characterization of parametric design problems the difference
between constraints and requirements is conceptual rather than formal.  Therefore they are
modelled in our ontology as subclasses of a generic design-prescription  class.  This is
defined as follows:
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(def-class DESIGN-PRESCRIPTION () ?c
  "The definitions common to constraints and requirements.
   A design prescription is characterised in terms of the associated
   expression.  This is a kappa expression predicated over a design
   model.  Not all design prescriptions are necessarily applicable
   to all design models."
  ((applicability-condition :default-value (kappa (?d) (true))
                            :type legal-prescriptive-expression)
   (has-expression :cardinality 1
                   :type legal-prescriptive-expression)))

There are two important aspects about this definition: design prescriptions are reified and are
associated with an applicability condition.  Reification is useful because it makes it easier to
reason about constraints and requirements.  The explicit specification of an applicability
condition is necessary to ensure that requirements and constraints are checked only on the
relevant design models - e.g. some requirements might only be applicable to complete models.
2.4.4. Modelling costs and preferences
Like design prescriptions, preferences are reified and associated with an expression.  In the
case of preferences this expression must be a backward clause associated with relation prefer  -
see definitions below.  This solution makes it possible to define preferences in a modular way,
while allowing maximum freedom for specifying arbitrarily complex preference expressions.

(def-class PREFERENCE () ?p
  "A preference defines an order over two design models.  The
   difference between a preference and a constraint or requirement
   is that these distinguish good from bad models, while preferences
   distinguish between better and worse models."
  ((has-expression :cardinality 1 :type prefer-expression)))

(def-class PREFER-EXPRESSION (proof-expression) ?exp
  "A prefer expression is a backward rule clause which tries to
   prove a prefer relation instance"
  ((proves-relation :value prefer))
  :constraint (and (== ?exp (?tail if . ?rest))
                   (== ?tail (prefer ?d1 ?d2))))

(def-relation PREFER (?d1 ?d2)
  "Use this relation to express preferences between design models"
  :constraint (and (design-model ?d1)(design-model ?d2))
  :axiom-def (defines-partial-order prefer))

A cost function is simply a function which associates a cost with a design model.  Costs are
typically represented either as real numbers or as vectors.  The latter are useful to model cost
functions which comprise a number of non-commensurable preferences.  For instance, our
model of the Sisyphus-I office allocation problem characterizes the output of the cost function
as a four-dimensional vector, <n1, n2, n3, n4>, where n1 measures the distance between the
room of the head of the group and that of the secretaries; n2 the distance between the manager’s
room and the rooms of the head of the group and the secretaries; n3 the distance between the
heads of projects and the head of group and the secretaries; and n4 provides a measure of the
‘project synergy’ afforded by a solution.  We use this notation to represent the relative
importance of the various preferences elicited during the task specification process - e.g. that
minimizing the distance between the head of the group and the secretaries is more important
than the degree of project synergy afforded by a solution.
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(def-class COST-FUNCTION (unary-function) ?cf
  "A cost criterion is a function which takes a design model and
   returns its cost.  The output can be either a real number or a
   vector"
  :iff-def (and (domain ?cf design-model)
                (range ?cf cost)))

(def-class COST () ?x
  "The costs we use are typically real numbers or vectors.
   This definition leaves other possibilities open"
  :sufficient (or (real-number ?x)
                  (vector ?x)))

3. A MODEL OF PARAMETRIC DESIGN PROBLEM SOLVING

As illustrated diagrammatically in figure 1, our approach uses the selection of a generic problem
solving paradigm (search) as an epistemological device to bridge the gap between the task and
method dimensions.  In what follows we will illustrate how this approach can be used to
develop a generic problem solving model for parametric design.

3.1 Parametric design as search
Searching in a parametric design context means to navigate a design space comprising a number
of design states. These are uniquely defined by the associated design model.
In order to formulate a design space we need only a task specification, given that this provides
all the necessary information for generating all possible design models associated with a task.
No additional assumptions are introduced here, either about the structure of the design space or
the availability of search-control knowledge. Thus, the notion of design space makes it possible
to move from a task-oriented perspective to a problem solving-oriented one.  Let us consider a
design space about which we only know the generic structure of a node.  It follows that, in the
absence of additional knowledge, the only approach which a problem solving agent can take to
solve the task is to search.  Thus, by introducing the notion of design space, we introduce a
problem solving framework which is completely method-independent and presupposes only the
existence of a task specification.  By instantiating this framework in terms of the concepts
defined in the parametric design task ontology, we can then formulate a generic model of
parametric design problem solving.

3.2 Design operators as primitive design steps
Each design state describes a certain model of the artefact. In the initial state the model is very
vague since only design prescriptions are known. In a solution state the artefact is fully
specified, all requirements are satisfied and no design constraint is violated. This task-oriented
characterization of a design space describes the design space declaratively but does not provide
any procedural instruments for defining transitions between states. Without means for state
transitions a problem solving method would not be able to incrementally construct a solution to
the task.  Thus, the notion of state transition is crucial to introduce a problem solving element in
our task-oriented definition of a design space.
Transitions between design states are achieved in our model by applying design operators.  A
design operator is a generic concept which represents an elementary design step.  Specific
design methods may specialize design operators by including additional problem solving
knowledge.  For instance, a Propose&Revise problem solver refines the concept of design
operator by differentiating between those design operators used during the Propose task,
procedures, and those used during the Revise task, fixes.
A design operator can be constructed in four possible ways:
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• If the value range Vi of a parameter pi is discrete, then a design operator for pi can be
defined as a generator which, given a design state in which pi is unbound, produces
alternative design extensions where pi is bound to a different element of Vi.

• Functional constraints and requirements can be operationalized into design operators.
For instance a functional constraint such as "door operator weight = door operator engine
weight + door operator header weight" can be transformed into a design operator which
calculates the value for parameter 'door operator weight'.

• If there is a preference, pri, which suggests a value, vij , for a parameter, pi, then this
preference can be transformed into a design operator extending the input design model
with one which includes the assignment <pi . vij>.  When multiple operators exist for a
particular parameter, then the relation design-operator-order , which is included in
our generic method ontology, can be used to provide context dependent control
knowledge. This mechanism makes it possible to transform preference ratings into
search control knowledge.

• Heuristic problem solving knowledge can be brought in to construct an operator.  For
example, the recommended procedure for computing the position of the counterweight in
the VT elevator design application places this half way between the platform and the U-
bracket.  In relation to the VT task specification, this operator does not define a constraint
or a requirement.  It could possibly be characterised as a preference, on the basis that
locating the counterweight in a central position has some cost advantages.  Another
possibility is that the role of this operator is just to codify experiential problem solving
knowledge - i.e. a central position is a 'good default' for the counterweight.  In this case
the knowledge expressed by the operator is not related to the task specification.

These four categories provide an epistemological characterization of design operators in terms
of the type of knowledge they rely on.  In addition, design operators can also be differentiated
depending on whether they are used to extend a design model, to fix an inconsistency, or to
lower the cost of a design model.

3.3 A generic problem solving model for parametric design
3.3.1.  Basic goals and assumptions.
Our generic model of parametric design problem solving decomposes the parametric design task
into a number of subtasks and proposes default (sub-)methods for carrying them out.  Thus, its
main purposes are (1) to identify the generic tasks which characterise parametric design
problem solving, and (2) to provide the ‘root node’ of a library of PSMs for parametric design.
The first objective is based on the assumption that there exists a set of generic tasks, which is
common to different methods for parametric design.  This assumption is justified both by
theoretical and empirical evidence.  From a theoretical point of view the adoption of a search-
centred framework constrains the number and the type of feasible problem solving activities.
Empirical evidence is provided by existing surveys of design problem solvers (Balkany et al.,
1993), which have uncovered generic problem solving activities which are common to different
approaches.
The second objective has to do with providing a strong organizational structure for the library,
which makes it possible to define new PSMs as relatively simple refinements/configurations of
the generic problem solving model.  In particular, PSM specification is carried out by
performing any number of four types of activities: specializing one or more components in the
generic problem solving model; refining the generic method ontology; selecting a particular sub-
method for a sub-task; and introducing new sub-tasks or sub-methods.  Because - as we will
see shortly - i) the building blocks comprising the generic problem solving model are relatively
high-level components and ii) each PSM is defined by refining a pre-existing model, typically
only few components are needed to define new PSMs - on average six or seven.  Moreover, the
resulting PSMs are characterized in a homogeneous style - i.e. they share the same high-level
components.  This approach makes it easier both to compare and contrast PSMs and to define
'hybrid' PSMs by integrating components from pre-existing PSMs.
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In section 4 we will discuss a number of PSMs, which were constructed by refining and
augmenting the generic model for parametric design problem solving.  In the remaining of this
section we describe the main components included in the generic model.
3.3.2.  Method-generic control regime.
Given the adopted search-based approach we can define a simple, but generically applicable
control regime, which provides the main control structure of our problem solving model.  This
control regime - informally9 specified in figure 2 - initializes the design space and then
iteratively performs a cycle in which i) a design state is selected according to some criterion and
ii) subtask Design-from-State is then invoked.  This cycle is exited either when the design has
been completed or when state selection fails.

Generic Task Generic-Design-Control
Inputs : Design-operators, Current-task
Output : Design-state
Control : Design-space
Goal: “To return a state which satisfies the goal of the current task”
Subtasks: Initialize-Design-Space, Select-Design-State, Design-from-State
Body: Initialize-Design-Space(Current-task) -> Design-space

Repeat
Select-Design-State(Design-space) -> Design-state
If  “Select-Design-State fails”
    then Return  () -> Fail
    else
        If  “Design-state satisfies the goal of the current task”

then Return () -> Success
else
    D o
       Design-from-State(Design-state)

Figure 2.  Informal specification of Generic Design Control

The important feature of the control regime shown in figure 2 is that it is completely PSM-
generic, i.e. all PSMs included in our library subscribe to it.  Thus, it is possible to differentiate
between alternative PSMs only on the basis of specific solutions to design subtasks, rather than
in terms of the overall control regime.  The advantage of this approach is that it is much easier
to reason about functionally characterized behaviours than about different control regimes.
Moreover, this approach also facilitates the process of mixing and matching problem solving
components.
Of the three subtasks of Generic-Design-Control only Design-from-State and Select-Design-
State introduce dimensions for characterising alternative PSMs for parametric design.  Task
Initialize-Design-Space simply initialises the design space by creating its root state.  The
creation of a new design state consists of two steps: (i) creating the association between the
state and the relevant design model and (ii) evaluating this to derive the information which is
needed to reason about this state and to compare and contrast it to other known states (e.g.
during the state selection task).  Tasks Evaluate-State, Select-State and Design-from-State are
discussed in the following three sub-sections.
3.3.3.  State evaluation.
There are four main types of knowledge associated with a design state which might be needed
by a problem solver: consistency (whether the model violates some constraints), cost,
completeness (whether any parameter is unbound in the model), and feasibility (whether the
state can lead to a solution). This breakdown is meant to provide maximal coverage - i.e. given

9 We are giving an informal specification of this control task only for the sake of convenience.  All model
components in the library are specified in OCML - see (Motta, 1998b) for a full specification of the generic
problem solving model for parametric design.
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i) the characterization of the parametric design class of problems provided by our task ontology
and ii) consistently with our experience, these four classes provide all the knowledge required
to make decisions about the current design state.  However not all problem solvers require all
four classes of knowledge.  For example, some problem solvers are not concerned with cost
issues.
3.3.4.  State selection.
At any stage of the design process, a problem solver (be it human or artificial) knows about a
number of design states which are relevant to the problem in hand.  Typically, these are the
states which have been explored during the current design process, i.e. the states included in
the portion of the design space searched so far.  However, human designers are also capable of
reusing past designs and the same applies to problem solvers which make use of case-based
reasoning techniques when solving design applications (Zdrahal & Motta, 1996).  Therefore,
from a general point of view we assume that the input to task Select-Design-State refers
generically to all the design states available to the problem solver, either because they have been
explored during the current design process, or because the problem solver has access to other
relevant design knowledge.
Assuming that a rational problem solver would not normally select a design state known to be
unfeasible (a dead end), it follows that state selection is carried out in terms of the other three
main criteria discussed in the previous section: completeness, consistency, and cost.  In section
4 we will show that different state selection criteria account for the different behaviours of
alternative PSMs - see also (Motta and Zdrahal, 1996).
3.3.5.  Task Design-from-State
Having selected a design state (in practice, a design model), a problem solver has to decide how
to modify it, which requires a decision on which operator to apply to the current model.  In
general, there are various levels of decision-making required in order to reach a decision on the
selection of a design operator.  At the highest level of abstraction operator selection is driven by
the current design context.  This can be seen as a high-level abstraction which is useful to
denote typical design scenarios.  For instance a Propose&Revise problem solver distinguishes
between two kinds of operators: procedures and fixes.  If the selected design model is
inconsistent, then the problem solver may choose one of the relevant fixes, otherwise it will
choose one of the applicable procedures.  To account for this behaviour we say that operator
selection in a Propose&Revise problem solver takes place in two different contexts: one in
which design extensions are carried out, and one in which inconsistent models are revised.

Design-from-State

Design-from-Focus Collect-Focus-Operators

Select-Design-Operator Apply-Design-Operator

Collect-Design-FociDesign-from-ContextSelect-Design-Context

Evaluate-Design-State

Select-Design-Focus

Figure 3.  Main subtasks of Design-from-State

Having selected the current design context, a problem solver then decides on which element of
the current design model to focus the design process.  We call this the design focus.  For
example, in the context of the revision phase a Propose&Revise problem solver focuses on the
particular constraint violation which it is trying to resolve.  If the context is one of model
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extension, then the design focus would be given by the parameter which is going to be assigned
a value.
The notions of design context and design focus allow us to introduce two intermediate levels of
decision making which are carried out after state selection and before the selection of a design
operator.  Thus, we can decompose task Design-from-State as shown in figure 3.
Space limitations do not allow us to discuss these subtasks in detail, therefore we only indicate
the main decision-making aspects associated with them.  Full details can be found in (Motta,
1998b).
The control method associated with task Design-from-State provides the main differentiation in
terms of control between different PSMs.  Methods such as Propose&Backtrack (Runkel et al.,
1996) exhibit a simple control structure which repeatedly selects and extends the selected state.
Instantiations of the Propose&Revise class of PSMs carry out different actions, depending on
whether the current context is propose or revise and whether they intermingle the two phases or
carry out revisions only after model completion (Zdrahal and Motta, 1995).
Tasks Design-from-Context and Design-from-Focus provide generic control regimes at
different stages of the design process.  The former selects a design focus and invokes task
Design-from-Focus; the latter selects and applies a design operator and evaluates the resulting
state.
Tasks Collect-Design-Foci and Collect-Focus-Operators are relatively uninteresting from a
decision-making point of view: our model assumes that the relevant application-specific
knowledge is provided.  In most applications this knowledge consists of simple indexing
mechanisms.
Much more interesting are the three selection tasks on the left hand side of figure 3.  In
particular, selecting the 'right' design focus, e.g. the right parameter or constraint violation, can
be crucial for performance-related or competence-related reasons.  From a performance point of
view selecting the right focus helps to reduce unnecessary backtracking - in particular when
carrying out design extensions.  From a competence point of view, selecting the right focus is
crucial when using incomplete PSMs.  For instance, incomplete configurations of
Propose&Revise problem solvers crucially rely on focus selection knowledge to reach a
solution design; in (Motta et al., 1996) we showed that machine learning techniques can be
used for acquiring focus selection knowledge for constraint selection in a revise context.
Our library provides both ontological and problem solving support for carrying out focus
selection.  In particular, it provides a default focus selection strategy (for a design extension
context), which combines a dynamic search rearrangement heuristic (Dechter and Meiri,
1989)10 with application-specific focus selection knowledge.
As already pointed out, our generic method ontology also provides support for expressing
knowledge about operator selection.  This type of knowledge is often called local preference
knowledge (Poeck and Puppe, 1992) and is defined as knowledge which can be used to make
locally optimal decisions.  The use of local preference knowledge leads to greedy algorithms,
such as hill-climbing, which can get stuck in local maxima.  It is important to highlight that, in
contrast with the focus selection case, the techniques developed in the constraint satisfaction
literature, i.e. value ordering heuristics (Dechter and Pearl, 1988), are of only limited use here.
These techniques try to find, at each stage of the variable assignment process, the least
constraining values - i.e. the values which are less likely to cause backtracking at a later stage of
the constraint solving process.  Unfortunately these heuristics are only practical in binary
constraint networks with fixed variable ordering.  As discussed by Sadeh and Fox (1996),
these heuristics do not perform very well in the presence of dynamic variable ordering, which is
the general scenario assumed in our problem solving model.

10 Dynamic search rearangement "selects as the next variable to be instantiated a variable that has a minimal
number of values which are consistent with the current partial solution. Heuristically, the choice of such
variable minimizes the remaining choice" (Dechter and Meiri, 1989).
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A listing of the main tasks included in the generic model of parametric design problem solving
is given in table 1.  The tasks are divided in four classes.  Goal specification tasks are tasks
which do not define a task body - i.e. they provide only a goal specification.  Problem types are
a subclass of goal specification tasks.  Composite tasks introduce a task-subtask
decomposition; primitive tasks solve a goal directly.

Tasks Type
Parametric Design Problem Type

Generic Design Control Composite Task

Design from State Goal Specification Task

Initialize Design Space Composite Task

Select Design State Goal Specification Task

Evaluate Design State Composite Task

Evaluate feasibility Primitive Task

Evaluate cost Primitive Task

Evaluate consistency Primitive Task

Evaluate completeness Primitive Task

Extend design Composite Task

Collect design foci Goal Specification Task

Design from context Composite Task

Select design focus Goal Specification Task

Design from focus Composite Task

Collect focus operators Goal Specification Task

Order focus operators Primitive Task

Select design operator Goal Specification Task

Try design operator Goal Specification Task

Apply design operator Primitive Task

Table 1.  Main tasks in parametric design model.

The tasks shown in table 1 provide a set of high-level building blocks for constructing
parametric design problem solvers.  In our experience this set is quite complete.  In particular
we found that the only situation in which a new task needed to be added was when introducing
new contexts.  For instance, in order to model Propose&Revise we needed to add a task,
Revise-Design, associated with a revise context.
Table 2 shows a synoptic description of the main knowledge roles included in the generic
method ontology associated with our model of parametric design problem solving.  The classes
shown in bold indicate the main domain roles associated with the framework.  These roles can
be filled by means of the appropriate application-specific knowledge, much as in the approach
based on role-limiting methods (Marcus, 1988).  Other types of domain knowledge, which are
shown in bold-italics, denote optional roles, which are useful to improve the efficiency of the
problem solving process, but are not essential to develop an application.  Finally, the roles
shown in plain text indicate intermediate knowledge structures generated during a problem
solving process.
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Knowledge Classes Description
Design Operator Knowledge for modifying design models

Design Space The space of all design models considered
by a problem solver

Design State An element of the design space

Design Context Abstract label associated with a design state
which can be used to decide the next
problem solving step.

Design Focus Abstract notion which denotes the main
design element driving the selection of a
design operator.

Focus Selection Knowledge Knowledge used to select a design focus

Operator Selection Knowledge Knowledge used to select a design operator

Available Parameter Values Knowledge which supports the generation
of the values available for an unbound
design parameter.

Table 2.  Main classes of problem solving knowledge for parametric design.

4. ORGANIZING A LIBRARY OF PROBLEM SOLVING METHODS

The model of parametric design problem solving presented in the previous section is defined in
terms of a number of generic tasks which provide useful building blocks for re-engineering
existing problem solving methods for parametric design and for constructing new ones.  In this
section we will use these building blocks to model a number of parametric design methods.  In
particular, we will show that this uniform view of problem solving methods provides a number
of advantages, including: (i) a common framework suitable for comparing and contrasting
different methods, (ii) an organizational schema providing the overall structure of a library of
reusable problem solving components and (iii) a search-centred interpretation model which can
be used to understand the problem solving role played by the mechanisms and knowledge
structures employed by problem solving methods - e.g. the fix mechanism in Propose&Revise.

4 . 1 Structuring problem solving methods
In what follows we will characterize a number of PSMs in terms of a generic method
description template which considers a method's knowledge requirements, its approach to state
selection and processing, and its global properties, such as completeness and optimality.  We
use this particular template for the simple reason that it provides all the information we need to
understand what a PSM can provide (global properties), what knowledge it requires
(knowledge requirements) and how it behaves (state selection and processing).  Of course, it is
important to keep in mind that the library does not comprise monolithic PSMs, but rather
method components (e.g. generic tasks) and ontological definitions, which can be easily
combined to produce a large number of alternative PSMs.  Therefore, when talking about a
"PSM in the library" we are really only indicating a particular configuration of method
components which is interesting from some viewpoint.
Table 3 applies our method description template to a straightforward configuration of the
problem solving model described in the previous section.  This PSM, which is called Generic-
Parametric-Design, was defined by augmenting the generic problem solving model with the
primitive methods required for carrying out all goal specification tasks included in the model.
For instance, these primitive methods include mechanisms for carrying out state, focus and
operator selection.  Generic-Parametric-Design makes use of a depth-first search strategy, as
well as focus selection and operator selection knowledge.  The former is used to minimize
backtracking and the latter to perform local optimizations.  This PSM only considers one design



Page 17

context, extend, and its state selection policy always selects the maximal, consistent and
feasible design model.

State selection & processing

State Selection Policy 1) Violated constraints: No
2) Design model: Max

Contexts Extend (Extend incomplete state)

Focus Types Parameter

Knowledge requirements

Design Operator Types Design extension operator

Problem Solving
Knowledge

Focus Selection Knowledge
Operator Selection Knowledge
Available Parameter Values
(Cost Function not needed)

Global properties

Reachable Design Space All feasible states generated by the depth-first
search.

Completeness, Optimality Complete, optimizes design operator selection

Table 3.  Synoptic description of Generic-Parametric-Design.

It is interesting to note that, because of the state-based control regime used, this PSM does not
require a global cost function.  At each cycle of the design process, the state selection
mechanism will return at most one consistent and maximal state.  Therefore any further cost-
based discrimination would be unnecessary.
4.1.1.  Propose&Backtrack.
Propose&Backtrack is the method used by Runkel et al. (1996), to solve the VT problem
without resorting to the use of fixes.  This method implements a simple depth-first control
regime in which, at each step of the design process, unassigned parts are selected and assigned.
The assignment is carried out by selecting a value from the value range of the selected parameter
(part).  If the assignment results in an inconsistency, a different value is tried.  If there are no
values left, chronological backtracking is used to go back to a consistent state.  When deciding
which value to assign to a part, Propose&Backtrack assumes the existence of local preference
knowledge, which can be used to rank available parameter values.  In the case of the VT
application, this knowledge is based on the cost assigned to the relevant procedures and fixes.
As shown by the template in table 4, Propose&Backtrack is essentially the same PSM as
Generic-Parametric-Design.  Like the latter, Propose&Backtrack makes use of local preference
knowledge to make 'good' design extensions, and on chronological backtracking to go back
and explore alternatives paths to a solution, when an inconsistency or a dead end is
encountered.  Therefore, its performance relies on two crucial aspects of the problem: that the
available local preference knowledge is effective in guiding the search process, and that the
problem exhibits only a weakly connected (Sadeh and Fox, 1996) constraint network.  These
are pretty strong assumptions, which are rarely jointly satisfied except in relatively simple
parametric design problems.  For instance, chronological backtracking is too weak a control
regime to tackle VT efficiently (Runkel et al., 1996), while we also found that the available
local preference knowledge in the KMI office allocation problem11 (Motta, 1998b) was

11 This is a real-world office allocation problem which our institute faced when moving to a new building.
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inadequate to achieve a good solution by means of Propose&Backtrack.12  However, in those
cases where the constraint network is only weakly connected, as it is the case with the
Sisyphus-I office allocation problem (Linster, 1994), then Propose&Backtrack can be used to
generate solutions to the problem quite efficiently, even if these are not necessarily optimal.  In
particular, in those cases where no application-specific focus selection knowledge is available,
heuristic techniques, such as dynamic search rearrangement, can be effectively used to improve
the performance of Propose&Backtrack.

State selection & processing

State Selection Policy 1) Violated constraints: No
2) Design model: Max

Contexts Extend

Focus Types Parameter (Part)

Knowledge requirements

Design Operator Types Design extension operator

Problem Solving
Knowledge

Preference knowledge for value ranges
Available Parameter Values

Global Properties

Reachable Design Space All feasible states generated by the depth-first
search.

Completeness, Optimality Complete, optimizes design operator selection

Table 4.  Propose&Backtrack

4.1.2.  Propose&Revise.
A problem with the two methods described so far is that they both rely on a uniform problem
solving approach.  As Stefik (1995) points out, "Seldom does a single search method provide
an adequate problem-solving framework for a complex task."  In particular a uniform problem
solving approach inevitably restricts the types of problem solving knowledge which can be
applied to the problem.  For this reason researchers have developed problem solving methods
which distinguish between multiple phases and introduce a richer variety of knowledge
structures.  A famous example of such an approach is Propose&Revise (Marcus and
McDermott, 1989), which differentiates between design extension and revision and introduces
the appropriate knowledge roles for both phases.
Given that all design methods contain a model extension phase, the main contribution of the
Propose&Revise class of methods is in the introduction of the Revise task, which modifies pre-
existing assignments by means of special-purpose design modification operators called fixes.
Applying fixes can be understood as performing knowledge-based backtracking (Marcus et al.,
1988).  Another way to look at fix application is by adopting a state-centred viewpoint.  If we
take this view then the main novelty of a Propose&Revise approach is that it does away with
the assumption that only consistent states can be found on a solution path (i.e. a path from an
initial to a goal state).  This principle of constraint violation tolerance opens up a number of
possible strategies for design problem solving.  For instance this principle can be instantiated in
case-based design by relaxing the constraint that only consistent design models need to be
stored in a library of cases.  In such a scenario, a case-based design problem solver could select
the design model in the library which most closely match the current specification (Zdrahal and

12 Specifically, this inadequacy was related to the non-monotonic nature of the cost function used for the KMI
office allocation problem, which made it very difficult to assess the quality of a partial model.  As a result,
PSMs such as Propose&Backtrack, which rely on local preference knowledge, were not as effective as
others, such as Propose&Improve, which perform improvement steps over complete models - see section
4.1.4 for a description of Propose&Improve.
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Motta, 1996), regardless of consistency issues, and then repair eventual inconsistencies by
means of repair methods (Minton et al., 1992).
As discussed in detail in (Zdrahal and Motta, 1995; Motta, 1998b), several approaches to
design revision are possible within the basic Propose&Revise approach.  However, we can
abstract from specific architectures and characterize the class of Propose&Revise in generic
terms.  Such a characterization is shown in table 5.

State selection & processing

State Selection Policy 1) Design model: Max
2) Violated constraints: Min
3) Cost: Min

Contexts Extend, Revise

Focus Types Parameter (Extend), Constraint (Revise)

Knowledge requirements

Design Operator Types Design extension operator, Fix (Revise)

Problem Solving
Knowledge

Fixes, operator cost, available parameter values

Global Properties

Reachable Design Space All feasible states (Propose),
Revision space (Revise)

Completeness, Optimality Method-dependent

Table 5.  Propose&Revise

As shown in the table, Propose&Revise refines our generic model by differentiating between
extend and revise contexts and between design extension and design revision operators.  This
differentiation introduces flexibility in the problem solving process and allows for specialized
problem solving knowledge.  However, the most important aspect which emerges from the
table concerns the state selection policy used by Propose&Revise problem solvers, which gives
priority to the size of design models over cost and consistency.  Intuitively, the idea of a
Propose&Revise approach is that backtracking needs to be avoided: the currently most complete
model should be operated on, even if it is inconsistent.  Thus, we can say that Propose&Revise
introduces a paradigm shift from a consistency-oriented to a completeness-oriented approach to
design problem solving.
Issues of completeness and optimality cannot be discussed for Propose&Revise as a class but
are associated with specific instantiations.  For instance, the Propose&Revise method originally
developed by Marcus and McDermott (1989) checks for inconsistencies after each model
extension step and revises the design model as soon as an inconsistency is found.  We call this
control regime Extend-Model-then-Revise (EMR) (Zdrahal and Motta, 1995).  As discussed in
(Motta and Zdrahal, 1996) EMR prunes heavily the search space while not providing a sound
converging criterion and is therefore an incomplete method.  Motta (1998b) describes a
modification of the EMR architecture, which gently degrades to depth-first search if a fix
application fails (and is therefore complete).
Only local optimality is typically provided by Propose&Revise methods, such as EMR.
However, it is possible to define an instantiation of the Propose&Revise approach which makes
use of a global optimality criterion when searching the revision space.  The resulting PSM,
CMR-A*, is described in the next section.
4.1.3.  CMR-A*
An alternative to EMR is the Complete-Model-then-Revise (CMR) approach (Zdrahal and
Motta, 1995), in which revision only takes place once the design model has been completed.
An advantage of CMR is that because all constraint violations are tackled together, after the
completion of the design extension process, it is therefore possible to reason about the relations
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between constraints, parameters and fixes, and about the fix application process itself.  For
instance it is possible in a CMR approach to make use of techniques such as the min-conflict
heuristic13, which improve the efficiency of the constraint satisfaction process in the average
case (Minton et al., 1992).
The CMR-A* method uses an A*-style search during the revision phase (Zdrahal and Motta,
1995).  The important aspect of this PSM is that its state selection policy adopts a cost-centred
strategy.  Thus, the method sacrifices quick convergence criteria (choosing the maximal design
state) for cost minimization.  This method is characterized in table 6.

State selection & processing

State Selection Policy 1) Design model: Max
2) Cost: Min

Contexts Extend, Revise (Heuristic cost control)

Focus Types Parameter (Extend), Constraint (Revise)

Knowledge requirements

Design Operator Types Design extension operator, fixes

Problem Solving
Knowledge

Heuristic cost function, heuristic search control,
fixes, operator cost, available parameter values

Global Properties

Reachable Design Space All feasible states generated so far

Completeness, Optimality Complete, global optimization over the revise
space

Table 6.  CMR-A*

4.1.4.  Propose&Improve
Another way of introducing differentiation in the problem solving process, without sacrificing a
consistency-oriented approach is by means of the Propose&Improve class of methods (Motta,
1998b) - see table 7.

13 This heuristic says: "when a number of constraint violations occur, then try to modify the variable that
minimizes most conflicts" - i.e. kill as many birds as you can with one stone.
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State selection & processing

State Selection Policy 1) Violated constraints: No
2) Design model: Max
3) Cost: Min

Contexts Extend, Improve

Focus Types Parameter - Unassigned (Extend),
Most expensive (Improve)

Knowledge requirements

Design Operator Types Design extension operator, design modification
operator

Problem Solving
Knowledge

Focus selection, operator selection, available
parameter values, detailed cost function

Global Properties

Reachable Design Space All feasible states generated so far (Propose),
Currently best state (Improve)

Completeness, Optimality Complete, globally optimal with respect to
'improve' phase

Table 7.  Propose&Improve

The basic idea underlying Propose&Improve is that optimality can be achieved or approximated
by dividing the problem solving process into two phases: a 'propose' phase, which is
concerned with finding a solution, and an 'improve' one which attempts to improve it.  This
problem solving method is an example of using a 'pick and mix' approach  The propose phase
is carried out as in a Propose&Backtrack method, i.e. as a search process driven by local
preference knowledge, with backtracking when an inconsistent model is encountered. The
'improve' phase consists of a global hill-climbing process which identifies the solution
components which are currently most expensive, and then uses specific improvement operators
to modify them.  As in the case of Propose&Revise, a Propose&Improve method can be
defined as a specialization of Generic-Parametric-Design, simply by introducing the relevant
contexts and operator types.
Propose&Improve is particularly suitable for parametric design problems in which optimality is
an important solution criterion and which are characterized by a dynamic cost function - i.e. a
cost function in which the cost of an assignment can only be fully evaluated once a number of
other assignments have been completed.  This situation often arises in resource assignment
problems, such as timetabling and office allocation (Motta, 1998b).

4 . 2 Summing up
Earlier we said that the approach we have taken to constructing and organizing a library of
reusable components for parametric design provides the following benefits: i) a common
framework suitable for comparing and contrasting different methods, ii) an organizational
schema providing the overall structure of a library of reusable problem solving components and
iii) an interpretation model which can be used to understand the problem solving role played by
the mechanisms and knowledge structures employed by different problem solving methods.
In the previous sections we have shown how different PSMs can be characterized as
specializations of our framework and compared in terms of their knowledge requirements and
their global and state-related properties.   These descriptions can be used to understand and
differentiate the behaviours of alternative methods.  For example, as discussed in detail in
(Motta and Zdrahal, 1996) it is easy to see that the better competence exhibited by CMR-A*
over EMR and CMR in the VT application is due to the incomplete nature of the search policies
used by EMR and CMR - in particular the non converging criterion used for state selection.
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The uniform description of PSMs afforded by our framework also makes it possible to
understand better the nature of the problem solving knowledge used by different PSMs.  For
instance, our framework characterizes fixes as specialized operators for a revision context and
isolates this notion from specific approaches to searching the revision space.  In particular,
when we configured our generic model of Propose&Revise problem solving to develop a
rational reconstruction of the EMR method used by Marcus et al. (1988) we found that the there
was no need to introduce the distinctions between incremental and non-incremental fixes and
between fixes and fix combinations discussed in (Yost and Rothenfluh, 1996).  These
distinctions do not denote types of problem solving knowledge which are relevant to a
knowledge-level analysis of Propose&Revise; instead they specify a particular search strategy,
which consists of navigating a revision space in a cost-conscious way (Motta, 1998b).
We have also shown that our framework provides engineering leverage supporting a
specialization-oriented process of PSM specification.  In particular, the notions of design
operator, design focus and design context provide very powerful abstraction mechanisms for
defining new PSMs.  For instance, less than 10 definitions were needed to define an EMR-style
PSM as a refinement of Generic-Parametric-Design.  These definitions were introduced to
define i) the class of fixes as a refinement of class design-modification-operator ; ii) a
method associated with task Design-from-State specifying the EMR control regime; and iii) the
relevant methods required to specify focus and operator selection and collection in a revise
context.
Figure 4 shows the space of the main classes of PSMs which we have modelled in our library.
The taxonomy is based on two criteria: i) whether or not a method's state selection policy only
considers consistent states and ii) whether a method pursues local or global optimization
policies.  Of course, the figure only reflects some interesting points in the space of the PSMs
and is not meant to circumscribe the coverage of the library.  Endless possibilities for PSM
configuration are available, by 'mixing and matching' different method components (e.g. we
have defined a Propose-Revise-Improve method).  Moreover, the figure does not include a
number of case-based PSMs which we have also developed (Zdrahal and Motta, 1996).  To
date we have built and made use of eighteen different PSMs out of library components.
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Propose&Backtrack
(Runkel et al., 1996)

Hill climbing design
(Motta, 1998b)

A*-design
(Motta, 1998b)

Propose&Improve
(Motta, 1998b)

CMR-A*
(Zdrahal & Motta, 1996)

P&R (EMR)
(Marcus & McDermott, 1989)

P&R (CMR)
(Zdrahal & Motta, 1995)
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(Zdrahal & Motta, 1995)
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(Poeck & Puppe, 1992)
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Global
optimisation

Local
optimisation

Global
optimisation

Figure 4.  Taxonomy of problem solving methods for parametric design.

5. APPLICATION DEVELOPMENT BY REUSE

5 . 1 Integrating a problem solving method with domain knowledge
The modelling framework used for structuring the library construction process also supports a
reuse-centred application development methodology.  This consists of three major steps: i)
instantiating a generic task ontology for a particular application, ii) selecting/configuring a
suitable PSM and iii) integrating the chosen PSM with an application domain.
Domain knowledge itself can be specified in a task- or PSM-independent fashion, thus
obtaining a reusable, multi-functional (Murray and Porter, 1988) knowledge base.  Two
problems can arise when applying a PSM to a multi-functional knowledge base:

• There can be a mismatch between the modelling schema used in the domain model and
the knowledge types required by the problem solving method.

• The available multi-functional domain model might not comprise all the knowledge
required by the problem solving method.

A representation mismatch can be addressed by adding appropriate mapping mechanisms
(Gennari et al., 1994).  For instance the method-specific concept of parameter can be mapped to
the domain-specific concept of employee when applying a parametric design problem solver to
an office allocation problem (Motta, 1998b).
The second bullet point concerns knowledge missing in the domain model.  For example, in an
office allocation problem the knowledge about office preferences and allocation requirements is
important. This knowledge is application-specific and therefore cannot be part of a multi-
functional domain knowledge base.  Therefore, it needs to be acquired on an application-
specific basis.
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(def-instance Arthur_S Reader
    ((courses_chaired dm871)...)

Multi-functional Domain Model

Problem Solving Method

Problem Solving Paradigm

Generic Task
Specification

Generic Problem Solving Model

Figure 5.  Overall modelling framework

In order to account for these two modelling situations, i.e. formulating the relevant mapping
mechanisms and acquiring application-specific knowledge, our framework includes a fourth
type of component, application configuration knowledge.  In contrast with the other three
components (task, problem solving method and domain model) this knowledge tends to be
application specific and therefore not reusable.  The overall application modelling framework is
shown in figure 5.

5 . 2 Application domains
Our application domains include the Sisyphus-I (Linster, 1994) and KMI (Motta, 1998b) office
allocation problems, the VT elevator design problem (Yost and Rothenfluh, 1996), sliding
bearing design, initial vehicle design and design of casting technology for manufacturing
mechanical parts (Valasek and Zdrahal, 1997).
Sisyphus-I is quite a simple problem which we used as a test case for trying out several PSMs
(Motta, 1998b).  In particular, we found that the dynamic search rearrangement heuristic was
able to account for all but one of the problem solving steps of the virtual domain expert (Siggi).
Moreover, by applying the A*-design14 PSM to the problem, we found that the solution
reached by Siggi was not optimal.
The reuse of various versions of Propose&Revise, originally developed for the VT problem, to
the sliding bearing design problem was straightforward and required only simple domain
mappings.
Tackling the KMI office allocation was more complex, given that the relevant optimality
criterion (minimizing the distance between each KMI member and his collaborators across a
number of 'affinity groups') was non-monotonic.  In particular, we found that approaches
based on local optimization did not produce very good solutions to the problem and that A*-
type search was too expensive.  As a result, we devised the Propose&Improve PSM, which
performed much better than other alternatives.
Initial vehicle design and design casting technology for manufacturing mechanical parts are
large applications being developed in cooperation with industrial partners.  In all these cases
application development includes selecting and adapting method components from the library
both to make use of application-specific problem solving knowledge and to integrate additional
tools (databases, simulation packages etc.).  The preliminary results indicate that this
technology leads to significant improvement in the efficiency of the design process (typical
improvement by a factor 10).

14 This is a PSM obtained by instantiating the A* search algorithm in terms of the parametric design task
ontology.
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6. RELATED WORK

6 . 1 Related work in modelling libraries
The most comprehensive generic library of model components is the one produced as a result of
the Common KADS project (Breuker and Van de Velde, 1994).  It consists of three main
classes of library components: modelling components, modelling operators, and generic
models.  Generic models are “complete expertise models” (Valente et al., 1994); modelling
components are elements of expertise models; and modelling operators are relations between
generic models.  These specify a possible transformation of a generic model.  Modelling
operators are included in the library to ensure that not only the results, but also the model
building steps involved in a model construction exercise are captured by the library.
The generality of the approach taken in the Common KADS library essentially defines both the
strengths and weaknesses of the Common KADS approach.  It makes it possible to account for
different approaches to modelling and to library organisation but necessarily it only provides
fairly weak principles for structuring a library.  In contrast with the CommonKADS approach,
our library has a clear theoretical basis, which combines ontological engineering with a search
model of problem solving.
A number of researchers have developed libraries of PSMs structured as task decomposition
hierarchies (Steels, 1990; Chandrasekaran et al., 1992; Puerta et al., 1992; Van Heijst et al.,
1992; Benjamins, 1993).  While the details of the various approaches differ in various respects,
the basic idea is essentially shared by all these approaches.  Constructing a problem solving
method for a specific application consists of recursively navigating a task-method
decomposition tree, and at each stage selecting one of a number of possible methods applicable
to a task.  This selection can be done at run-time or during the design phase.
The basic principle of task-method structures is that, given a task, it is possible to find a
number of methods which can be used to solve it.  While this 'method-solves-task' association
is adequate for the purpose of navigating a library and configuring a PSM, it does not, on its
own, provide a strong enough organization model for developing a library.  As a result it is
quite difficult to get the task-method structure right (Orsvärn, 1996).  In contrast with these
approaches our library is based on a clear theoretical basis, which integrate both task-specific
and task-independent foundations.  Hence our library has a strong structure: any new method
added to the library has to be formulated in terms of the overall model of parametric design
problem solving.  This approach is consistent with the principle of method generality suggested
by Orsvärn: method adaptation is difficult and therefore should be avoided.  Hence, PSMs
should be as generic as possible.  This principle, in its informal connotation, applies to the
library of method components presented in this paper.

6 . 2 Related work in (parametric) design
6.2.1. Comparison with DIDS library
The DIDS system (Balkany et al., 1994; Runkel et al., 1996) provides domain-independent
support for building design applications.  The system is based on a generic model of
configuration design problem solving, which defines the generic data structures and tasks,
called mechanisms in the DIDS terminology, required for building design applications.  The
work presented here has a number of similarities with the DIDS approach.  Both frameworks
are based on a view of design as search through a design space and we share with the DIDS
researchers the goal of generating a set of reusable components for design applications.
A difference between the model presented here and the DIDS library of mechanisms is that the
latter aims to support full configuration design problem solving, while here we have focused on
parametric design problems.
Another important difference is that we seem to subscribe to alternative views of what
constitutes reuse.  For the DIDS researchers reuse consists of providing a very general problem
solving model.  However, the price for such generality is inefficiency - see solution #1 to VT
problem (Runkel et al., 1996).  In contrast with the DIDS approach, we believe that supporting
reuse consists of providing a rich set of reusable mechanisms, which can be used in different
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problem solving scenarios to develop efficient problem solvers.  This set is not meant to be
minimal.  On the contrary it is meant to be maximal and provide adequate leverage for
developing efficient reasoners.  For this reason our framework comprises a much more fine-
grained breakdown of parametric design tasks than afforded by the DIDS tools and our library
subsumes a variety of problem solving approaches, rather than just a generic constraint
satisfaction paradigm.
Finally, a third difference between the DIDS approach and ours is that while our approach is
based on a well-formulated model of problem solving, it is not obvious to see what is the
principle/model underlying the library of mechanisms in DIDS.  For example in (Balkany et al.,
1993) the DIDS researchers analyse a number of configuration design systems, and try to
classify the various mechanisms used by these systems into a number of generic categories:
select design extension, make design extension, detect constraint violation, select fix
mechanisms, make fix mechanisms, and test if-done.  For each of these generic tasks a number
of mechanisms drawn from the various systems are identified - e.g. 41 "make design
extension" mechanisms are listed in the paper.  The granularity of the mechanisms uncovered
by this analysis varies significantly.  Some mechanisms are low-level actions such as "do-
step", which performs "one step of a task", others are fairly high-level ones such as "create-
goal-for-constraint".  The problem with such a bottom-up approach is that each system uses a
different terminology, solves a different class of tasks - for instance arrangement vs. parametric
design - and employs control mechanisms at different levels of abstraction.  Therefore it is
difficult to compare them.  The approach we have taken here is different. We have specified
exactly the class of tasks we are dealing with - parametric design - and then we have formulated
the generic structure of the problem solving model appropriate for this class of tasks.  This
means that specific parametric design problem solvers can then be described by analysing how
they carry out the generic tasks introduced by our framework.
6.2.2. Comparison with Wielinga et al.
Parametric design is formally analysed in (Wielinga et al., 1995).  In this paper the authors
define a parametric design task specification and refine the associated competence theory to
derive properties of a CMR problem solving method.  Such an approach succeeds in
highlighting a number of assumptions underlying CMR, but it only produces limited results
with respect to assessing its competence.  The reason for these limitations is that, as already
pointed out, the competence of CMR is directly related to its state selection strategy.  Hence, it
is not possible to characterise it without a framework which explicitly operates with these
concepts.
Another important difference between the analysis of parametric design carried out by Wielinga
et al. and ours concerns the approach taken to move from a task specification to a generic
problem solving model.  In their paper, Wielinga et al. use the Generate & Test problem
solving paradigm to refine the task specification into an initial problem solving model.  In this
paper, we have instead adopted a view of design as search in a problem space.  While search
and Generate & Test have typically been considered as equivalent paradigms, it is interesting to
note that a procedural approach leads to a quite different analysis of parametric design problem
solving.
6.2.3. Comparison with constraint satisfaction approaches
Design problems in general and parametric design problems in particular can be viewed as
constraint satisfaction problems and can be solved by means of constraint satisfaction
techniques (Flemming et al., 1992).  Therefore it is important to compare the framework
presented here to constraint satisfaction models and discuss the differences between the two
approaches.
In a nutshell the difference between the approach formulated here and constraint satisfaction
techniques is that the former subscribes to a knowledge-based view of problem solving, where
knowledge is brought in to tackle complexity (Lenat and Feigenbaum, 1987).  Thus, the main
goal of our framework is to identify the knowledge-intensive tasks and types of application-
specific knowledge which can be exploited during parametric design problem solving to arrive
quickly at a solution.  In contrast with this approach, researchers in constraint satisfaction
attempt to develop domain-independent techniques which can be applied to solve problems
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characterised as assignments of values to variables which satisfy a set of constraints.  Thus,
there is a fundamental distinction in the goals driving research in knowledge modelling and
research in constraint satisfaction and - of course! - like other researchers who subscribe to the
knowledge-centred paradigm, we also believe that "the combinatorics of complex problems can
best be handled through the use of domain-specific knowledge" (Wielinga and Schreiber,
1997).
Nevertheless, as we have pointed out when discussing the model, it is possible to integrate the
techniques from the constraint satisfaction literature within a knowledge-intensive framework.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed a framework for application development and for organizing a
library of reusable components.  This framework draws from various KBS
technologies/approaches, including ontologies, problem solving methods, search, knowledge
acquisition as modelling and KBS reuse.  In particular our approach identifies the different
types of knowledge which comprise an application model, provides a clear theoretical basis to
the development of a library of reusable components, and imposes a uniform model of problem
solving which makes it easier to understand, compare, contrast and 'plug & play' problem
solving components.
Our library now includes hundreds of definitions and it has been successfully used to build
several applications.  Its usefulness has been proved not only by constructing several
applications by reuse, but also by showing that the PSMs themselves could be constructed as
refinements of the generic problem solving model.  No PSM in the library required more than a
dozen additional components for its specification; typically, the number is between six and
eight.
While all components of the library are specified in OCML, for the sake of efficiency we have
also implemented a parametric design shell in LISP, which provides implementation-level
components for all tasks and methods included in the generic problem solving model.  Thus,
efficient prototyping of application models, which integrate both OCML and LISP definitions,
is also supported15.
In the future we plan to extend this approach by tackling other problem types, such as
diagnosis.  As discussed in this paper, the search model of problem solving is completely
generic and therefore we do not envisage any problem in applying this approach to other areas.
Of course, in order to model diagnostic problem solving we expect that we will need to
introduce a higher degree of differentiation in the state space (i.e. multiple types of contexts and
operators) than it was needed for tackling parametric design.
Recent work by Fensel and Motta (1998) builds on the approach described here by
characterizing PSM specification as a process of navigating a three-dimensional space
consisting of problem-solving paradigms, e.g. search; problem spaces, i.e. task ontologies; and
domain assumptions, i.e. method ontologies.  This navigation process can be carried out by
formulating the relevant adapters (Fensel, 1997), which formalize individual PSM-building
steps.  This work aims to provide a comprehensive theory of problem solving methods,
subsuming both task-independent and task-specific approaches, and integrating knowledge-
based development with ‘conventional’ software engineering approaches.
Finally, the library presented here provides the baseline resource for a large, collaborative
research project, IBROW3 (Benjamins et al., 1998), which aims to develop web-based tools
supporting KBS construction by reuse.
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