
Ontology Modularization for Knowledge
Selection: Experiments and Evaluations ?

Mathieu d’Aquin1, Anne Schlicht2, Heiner Stuckenschmidt2, and Marta Sabou1

1 Knowledge Media Institute (KMi), The Open University, Milton Keynes, UK
{m.daquin, r.m.sabou}@open.ac.uk
2 University of Mannheim, Germany

{anne, heiner}@informatik.uni-mannheim.de

Abstract. Problems with large monolithical ontologies in terms of
reusability, scalability and maintenance have led to an increasing inter-
est in modularization techniques for ontologies. Currently, existing work
suffers from the fact that the notion of modularization is not as well un-
derstood in the context of ontologies as it is in software engineering. In
this paper, we experiment on applying state-of-the-art tools for ontology
modularization in the context of a concrete application: the automatic
selection of knowledge components to be used for Web page annotation
and semantic browsing. We conclude that, in a broader context, an eval-
uation framework is required to guide the choice of a modularization
tool, in accordance with the requirements of the considered application.
Keywords: Ontology modularization, partitioning, module extraction

1 Introduction

Modularization is a crucial task to allow ontology reuse and exploitation on the
Semantic Web. The notion of modularization comes from Software Engineering
where it refers to a way of designing software in a clear, well structured way that
supports maintenance and reusability. From an ontology engineering perspective,
modularization should be considered as a way to structure ontologies, meaning
that the construction of a large ontology should be based on the combination
of self-contained, independent and reusable knowledge components. In reality,
even if they implicitly relate several sub-domains, most of the ontologies are not
structured in a modular way. Therefore, in order to facilitate the management
and the exploitation of such ontologies, ontology modularization techniques are
required to identify and extract significant modules in existing ontologies.

While there is a clear need for modularization, there are no well-defined and
broadly accepted definitions of modularity for ontologies. Several approaches
have been recently proposed to extract modules from ontologies, each of them
implementing its own intuition about what a module should contain and what

? This work is partially funded by the Open Knowledge (IST-FF6-027253) and NeOn
projects (IST-FF6-027595), and partially supported by the German Science Foun-
dation under contract STU 266/1 as part of the Emmy-Noether Program.



should be its qualities, generally without making this intuition explicit. This lack
of consensus and of clarity hinders the application of these techniques in concrete
scenarios, leading to difficulties in choosing the appropriate one. Moreover, to
our knowledge, no other study has focused on the evaluation and comparison of
ontology modularization techniques.

Our hypothesis is that there is no universal way to modularize an ontology
and that the choice of a particular technique should be guided by the require-
ments of the considered application. We believe that modularization criteria
should be defined in terms of the applications for which the modules are catered.
For this reason, we detail in this paper some experiments conducted with sev-
eral ontology modularization tools on a particular application: the selection of
relevant knowledge components from online available ontologies. The goal is to
characterize the requirements of this particular application using criteria from
the literature on ontology modularization, and thus, to analyze the results of ex-
isting ontology modularization techniques regarding these requirements. In this
way, we aim at better understanding the fundamental assumptions underlying
the current modularization techniques. This work can be seen as a first step
towards a broader framework, guiding application developers in choosing the
appropriate technique and the designers of techniques in further developments.

The paper is structured as follows. Section 2 briefly describes the concrete
scenario in which we apply modularization techniques. Section 3 and Section 4
respectively overview ontology modularization techniques and evaluation criteria
that have been proposed in the literature. In Section 5 we evaluate, using the
considered criteria, the results of the application of modularization techniques
on our case-study. We conclude in Section 6 on the need for a comprehensive
evaluation framework for ontology modularizations.

2 A Case-Study for Modularization: The Knowledge
Selection Scenario

Knowledge selection has been described in [1] as the process of selecting the
relevant knowledge components from online available ontologies and has been
in particular applied to the Magpie application. Magpie [2] is a Semantic Web
browser, available as a browser plugin, in which instances of ontology classes are
identified in the current Web page and highlighted with the color associated to
each class. In our current work we are extending Magpie towards open seman-
tic browsing in which the employed ontologies are automatically selected and
combined from online ontologies. As such, the user is relieved from manually
choosing a suitable ontology every time he wishes to browse new content. Such
an extension relies on mechanisms that not only dynamically select appropriate
ontologies from the Web, but also extract from these ontologies the relevant and
useful parts to describe classes in the current Web page.

Our previous work and experiences in ontology selection [3] made it clear
that modularization may play a crucial role in complementing the current selec-
tion techniques. Indeed, selection often returns large ontologies that are virtually



Fig. 1. The knowledge selection process and its use for semantic browsing with Magpie.

useless for a tool such as Magpie which only visualises a relatively small number
of classes at a time. What is needed instead is that the selection process returns
a part (module) of the ontology that defines the relevant set of terms. These con-
siderations justify the need to extend selection techniques with modularization
capabilities. In Figure 1 we depict the three major generic steps of the knowledge
selection process that integrates ontology selection, modularization and merg-
ing. We focus in this paper on applying existing techniques for the second step
of this process: ontology modularization.

3 Modularization Techniques

We consider an ontology O as a set of axioms (subclass, equivalence, instantia-
tion, etc.) and the signature Sig(O) of an ontology O as the set of entity names
occurring in the axioms of O, i.e. its vocabulary.

In the following, we deal with several approaches for ontology modulariza-
tion, having different assumptions about the definition of an ontology module.
Therefore, we define an ontology module in a very general way as a part of
an ontology: a module Mi(O) of an ontology O is a set of axioms, such that
Sig(Mi(O)) ⊆ Sig(O).

Two different approaches have been considered for the modularization of
existing ontologies: ontology partitioning, which divides an ontology into a set
of modules, and module extraction, which reduces an ontology to a module
focusing on a given set of elements.

3.1 Ontology Partitioning Approaches

The task of partitioning an ontology is the process of splitting up the set of
axioms into a set of modules {M1, · · · ,Mk} such that each Mi is an ontology
and the union of all modules is semantically equivalent to the original ontology O.
There are several approaches for ontology partitioning that have been developed
for different purposes. We have chosen to consider only available techniques that
are sufficiently stable:



PATO refers to a standalone application described in [4]. The goal of this ap-
proach is to support maintenance and use of very large ontologies by provid-
ing the possibility to individually inspect smaller parts of the ontology. The
algorithm operates with a number of parameters that can be used to tune
the result to the requirements of a given application.

SWOOP refers to the partitioning functionality included in the SWOOP ontol-
ogy editor and described in [5]. This tool partitions an ontology into a set of
modules connected by ε-connections. It aims at preserving the completeness
of local reasoning within all created modules. This requirement is supposed
to make the approach suitable for supporting selective use and reuse since
every module can be exploited independently of the others.

3.2 Module Extraction Approaches

The task of module extraction consists in reducing an ontology to the sub-part,
the module, that covers a particular sub-vocabulary. This task has been called
segmentation in [6] and traversal view extraction in [7]. More precisely, given
an ontology O and a set SV ⊆ Sig(O) of terms from the ontology, a module
extraction mechanism returns a module MSV , supposed to be the relevant part
of O that covers the sub-vocabulary SV (Sig(MSV ) ⊇ SV ). Techniques for
module extraction often rely on the so-called traversal approach: starting from
the elements of the input sub-vocabulary, relations in the ontology are recursively
“traversed” to gather related elements to be included in the module.

Two module extraction tools are considered here:
KMi refers to a standalone application developed at the Knowledge Media In-

stitute (KMi) of the Open University, for the purpose of the knowledge
selection scenario, as described in [1]. The input sub-vocabulary can contain
either classes, properties, or individuals. The mechanism is fully automa-
tized, is designed to work with different kinds of ontologies (from simple
taxonomies to rich and complex OWL ontologies) and relies on inferences
during the modularization process.

Prompt refers to the module extraction feature of the Prompt toolkit, inte-
grated as a plugin of the Protégé ontology editor, as described in [7]. This
approach recursively follows the properties around a selected class of the
ontology, until a given distance is reached. The user can exclude certain
properties in order to adapt the result to the needs of the application.

It is worth mentioning that the technique described in [6] is also freely available,
but can only be used on the Galen ontology in its current state.

4 Evaluation Criteria for Modularization

In the previous section, we have briefly presented a number of different ap-
proaches for ontology partitioning and module extraction. In this section, we
take a closer look at different criteria for evaluating either the modules resulting
from the application of a modularization technique, or the system implementing
this technique.



4.1 Evaluating the Result of Modularization

In [8], the authors describe a set of criteria based on the structure of the modu-
larized ontology and that have been designed to trade-off maintainability as well
as efficiency of reasoning in a distributed system, using distributed modules.

Size. Despite its evident simplicity, the relative size of a module (number of
classes and properties) is among the most important indicators of the efficiency
of a modularization technique. Indeed, the size of a module has a strong influence
on its maintainability and on the robustness of the applications relying on it.

Redundancy. Allowing the modules of a partition to overlap is a common way
of improving efficiency and robustness. On the other hand, having to deal with
redundant information increases the maintenance effort.

Connectedness. The independence of a set of modules resulting from a partition-
ing technique can be estimated by looking at the degree of interconnectedness
of the generated modules. A modularized ontology can be depicted as a graph,
where the axioms are nodes and edges connect every two axioms that share a
symbol. The connectedness of a module is then evaluated on the basis of the
number of edges it shares with other modules.

Distance. It is worth to measure how the terms described in a module move
closer to each other compared to the original ontology, as an indication of the
simplification of the structure of the module. This intra-module distance is com-
puted by counting the number of relations in the shortest path from one entity
to the other. An inter-module distance, counting the number of modules that
have to be considered to relate two entities, can also be envisaged, as a way to
to characterize the communication effort caused by the partition of an ontology.

Several authors also defined criteria for evaluating ontology modules, in gen-
eral focusing on the logical and formal aspects of modularizations (see e.g., [9]).
Logical criteria are of particular importance when the modules resulting of the
modularization techniques are intended to be used in reasoning mechanisms, but
should not be emphasized in our case-study, which focuses on a human interpre-
tation of the module.

4.2 Evaluating the Modularization Tool

In [1] the authors focus on the use of modularization for a particular application.
This leads to the definition of several criteria, most of them characterizing the
adequacy of the design of a modularization tool with respect to constraints
introduced by the application.

Assumptions on the ontology. Most of the existing approaches rely on some
assumptions. For example, those described in [5] and [6] are explicitly made to
work on OWL ontologies, whereas [4] can be used either on RDF or OWL but
only exploits RDF features.



Level of user interaction. In many systems the required user entries are limited
to the inputs of the algorithm. In certain cases, some numerical parameters can
be required [4] or some additional procedures can be manually (de)activated [6].
The technique in [7] has been integrated in the Protégé ontology editor to sup-
port knowledge reuse during the building of a new ontology. In this case, modu-
larization is an interactive process where the user has the possibility to extend
the current module by choosing a new starting point for the traversal algorithm
among the boundary classes of the module.

Performance. Most of the papers concerning modularization techniques do not
give any indication about the performance of the employed method (with the
noticeable exception of [6]). Performance is a particularly important element
to be considered when using a modularization technique for the purpose of an
application. Different applications may have different requirements, depending
on whether the modularization is intended to be used dynamically, at run-time,
or as a “batch” process.

5 Experiments

In the scenario described in Section 2, modularization is integrated in a fully
automatic process, manipulating automatically selected online ontologies for the
purpose of annotation in Magpie. In this section, we simulate the process of
knowledge selection on two examples, using four different techniques, in order
to evaluate and compare their results3. The purpose is to characterize the re-
quirements of this particular scenario using the criteria defined in Section 4,
and to show how modularization techniques respond to the selected experiments
regarding these requirements.

As already described in [1], it is quite obvious that module extraction tech-
niques fit better in the considered scenario than partitioning tools. Indeed, we
want to obtain one module covering the set of keywords used for the selection of
the ontology and constituting a sub-vocabulary of this ontology. However, the re-
sult of partitioning techniques can also be used by selecting the set of generated
modules that cover the considered terms. The criteria are then evaluated on this
set of modules as grouped together by union. Furthermore, we primarily focus
on the criteria that appear to be relevant in our scenario: application related
criteria (Section 4.2), the size, and the intra-module distance (Section 4.1).

5.1 Considered Ontologies

We consider two examples, originally described in the context of ontology selec-
tion in [3], where the goal is to obtain an ontology module for the annotation
of news stories. We simulate the scenario described in Section 2 by manually

3 Actual results are available at http://webrum.uni-mannheim.de/math/lski/

Modularization



extracting relevant keywords in these stories, using ontology selection tools4 to
retrieve ontologies covering these terms, and then applying modularization tech-
niques on these ontologies (steps 1 and 2 in figure 1).

In the first example, we consider the case where we want to annotate the
news stories available on the KMi website5. We used the keywords Student,
Researcher, and University to select ontologies to be modularized, and obtain
three ontologies covering these terms:

ISWC: http://annotation.semanticweb.org/iswc/iswc.owl
KA: http://protege.stanford.edu/plugins/owl/owl-library/ka.owl
Portal: http://www.aktors.org/ontology/portal

It is worth mentioning that this example is designed to be simple: we have chosen
a well covered domain and obtained three well defined OWL ontologies of small
sizes (33 to 169 classes).

The second example was used in [3] to illustrate the difficulties encountered
by ontology selection algorithms. Consequently, it also introduces more difficul-
ties for the modularization techniques, in particular because of the variety of
the retrieved ontologies in terms of size and quality. It is based on the following
news snippet:

“The Queen will be 80 on 21 April and she is celebrating her birthday with a
family dinner hosted by Prince Charles at Windsor Castle”6

Using the keywords Queen, Birthday and Dinner, we obtained the following
ontologies, covering (sometimes only partially) this set of terms:

OntoSem: http://morpheus.cs.umbc.edu/aks1/ontosem.owl
TAP: http://athena.ics.forth.gr:9090/RDF/VRP/Examples/tap.rdf
Mid-Level: http://reliant.teknowledge.com/DAML/Mid-level-ontology.

owl, covering only the terms Queen and Birthday

Compared to Example 1, the ontologies used in Example 2 are bigger (from 1835
classes in Mid-Level to 7596 in OntoSem). Moreover, they contain different
levels of descriptions. For example, OntoSem is a big, complex OWL ontology
containing a lot of properties (about 600), whereas TAP is simple RDFS tax-
onomy without any properties. In that sense, we use Example 1 to assess basic
characteristics of the modularization techniques and then, rely on Example 2 to
show how these characteristics are influenced by the properties of the ontologies.

5.2 Results for Example 1

Running the four modularization techniques on the three ontologies of the first
example allowed us to test how they behave on simple, but yet practical real
word examples.

4 in particular Watson (http://watson.kmi.open.ac.uk).
5 http://news.kmi.open.ac.uk/
6 http://news.billinge.com/1/hi/entertainment/4820796.stm



Concerning the level of user interaction, SWOOP is fully automatic and
does not need any parameters besides the input ontology. As a module extraction
tool, KMi requires, in addition to the source ontology, a set of terms from
the signature of the ontology, defining the sub-vocabulary to be covered by the
module. This sub-vocabulary corresponds to the initial terms used for selecting
the ontology: Researcher, Student and University. Pato has to be fine tuned with
several parameters, depending on the ontology and on the requirements of the
application. Here, it has been configured in such a way that modularizations in
which the considered terms are in the same module are preferred. Prompt is an
interactive mechanism, in which the user is involved in each step of the process.
In particular, the class to be covered and the property to traverse have to be
manually selected, requiring that the user has a good insight of the content of the
ontology, can easily navigate in it, and that he understands the modularization
mechanism. When using Prompt, we manually included the input terms and
tried to obtain an (intuitively) good module, without going too deep in the
configuration. Note that, since the system crashed at the early stage of the
process, we did not manage to obtain results for the KA ontology with Prompt.

Concerning performance, apart from Prompt for which this criteria is irrel-
evant, each tool has only taken a few seconds or less on these small ontologies.
Experiences in Example 2 should give us a better insight on this criteria and on
the way techniques behave on different and larger ontologies.

Fig. 2. Relative size of the resulting modules for the first example.

Figure 2 shows the size of the resulting modules for each system in terms
of number of classes and properties. It can be easily remarked that SWOOP
generally generates very large modules, containing 100% of the classes for two of
the three ontologies, and an important proportion of the properties: in most of
the cases, SWOOP generates one module with almost the same content as the



original ontology. The tool developed in KMi is focused on generating modules
with a small number of classes (the smallest), so that the ontology hierarchy
would be easy to visualize. It nevertheless includes a large proportion of the
properties, in order to keep the definition of the included classes intact. Pato
is optimized to give an appropriate size. It generally operates an important
reduction of the size of the ontology.

The KMi tool relies on mechanisms that “take shortcuts” in the class hierar-
chy7 for reducing the size of the module. It is thus the only one that potentially
reduces the intra-module distance between the considered terms. For example,
in the Portal ontology, by eliminating an intermediary class between Researcher
and Person, KMi has reduced the distance between Researcher and Student,
while keeping a well formed structure for the module.

5.3 Results for Example 2

The second example concerns larger ontologies, with more heterogeneous levels
of description. For example, TAP contains around 5500 classes, but no property
or individual, whereas Mid-Level relies on almost 200 properties and is popu-
lated with more than 650 individuals for less than 2000 classes. These elements
obviously have an important impact on the performance of the modularization
techniques: in the worst cases (Pato and KMi on TAP), it takes several min-
utes to get a modularization and none of the tested techniques can be used at
run-time for such ontologies.

Moreover, some of the techniques are not designed to take into account such
big and heterogeneous ontologies. It is particularly hard for the user to handle
the process of module extraction in Prompt when having to deal with several
thousands of classes and hundreds of properties. We also did not manage to
partition the OntoSem ontology using Pato.

Finally, concerning the size of the resulting modules, the difference between
SWOOP and other techniques is even more significant in this example. Indeed,
because of the poor structure of the considered ontologies (restricted uses of
OWL constructs, few or insufficiently defined properties), KMi and Pato re-
sult in particularly small modules (less than 10 classes), whereas SWOOP still
includes most of the content of the ontology in a single module. Therefore, re-
garding the requirement about the assumption on the ontology, this shows that
techniques are highly influenced by the inherent properties of the ontology to be
modularized and that, in general, they assume a high level of description.

6 Conclusion and Discussion: Towards a Benchmark for
Modularization Techniques

There is currently an important growth in interest concerning modularization
techniques for ontologies, as more ontology designers and users become aware
7 Instead of including all the super-classes of the included classes, it only considers

classes that relate these entities: their common super-classes.



of the difficulty of reusing, exploiting and maintaining big, monolithic ontolo-
gies. The considered notion of modularity comes from software engineering, but,
unfortunately, it is not yet as well understood and used in the context of on-
tology design as it is for software development. Different techniques implicitly
rely on different assumptions about modularity in ontologies and these different
intuitions require to be made explicit.

This paper reports on preliminary steps towards the characterization of on-
tology modularization techniques. We reviewed existing modularization tools as
well as criteria for evaluating different aspects of a modularization, and used
them on a particular scenario: the automatic selection of knowledge components
for the annotation of Web pages. The main conclusion of these experiments is
that the evaluation of a modularization (technique) is a difficult and subjective
task that requires a formal, well described framework – a benchmark – taking
into account the requirements of applications. Such a framework would be useful
in two ways: first for application developers, it would provide a guide for choos-
ing the appropriate modularization technique, and second, for the developers
of modularization techniques, it would give directions in which techniques can
be improved with respect to particular scenarios. The definition of this eval-
uation framework requires to build an adequate, well understood dataset for
benchmarking and to improve the definition of the criteria for evaluation, in
particular to allow the expression of requirements concerning subjective notions
like the quality of the module.

References

1. d’Aquin, M., Sabou, M., Motta, E.: Modularization: a Key for the Dynamic Selection
of Relevant Knowledge Components. In: Proc. of the ISWC 2006 Workshop on
Modular Ontologies. (2006)

2. Dzbor, M., Domingue, J., Motta, E.: Magpie - towards a semantic web browser. In:
Proc. of the Second International Semantic Web Conference (ISWC). (2003)

3. M. Sabou, V.L., Motta, E.: Ontology Selection on the Real Semantic Web: How to
Cover the Queens Birthday Dinner? In: Proc. of the European Knowledge Acquisi-
tion Workshop (EKAW), Podebrady, Czech Republic (2006)

4. Stuckenschmidt, J., Klein, M.: Structure-Based Partitioning of Large Concept Hi-
erarchies. In: Proc. of the International Semantic Web Conference (ISWC). (2004)

5. Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of
OWL Ontologies Using E-Connections. In: Proc. of Description Logic Workshop
(DL). (2005)

6. Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification
and Use. In: Proc. of the World Wide Web Conference (WWW). (2006)

7. Noy, N., Musen, M.: Specifying Ontology Views by Traversal. In: Proc. of the
International Semantic Web Conference (ISWC). (2004)

8. Schlicht, A., Stuckenschmidt, H.: Towards Structural Criteria for Ontology Modu-
larization. In: Proc. of the ISWC 2006 Workshop on Modular Ontologies. (2006)

9. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: A Logical Framework
for Modularity of Ontologies. In: Proc. of the International Joint Conference on
Artificial Intelligence, IJCAI. (2007)


