
UML for the Semantic Web:
Transformation-Based Approaches

K. Falkovych1 M. Sabou2 H. Stuckenschmidt2

1 Department of Multimedia and Human Computer Interaction
CWI, Kruislaan 413 P.O. Box 94079 1090 GB

Amsterdam The Netherlands
Kateryna.Falkovych@cwi.nl

2 Artificial Intelligence Department
Vrije Universiteit, De Boelelaan 1081, 1081HV,

Amsterdam, The Netherlands
{marta,heiner }@cs.vu.nl

Abstract. The perspective role of UML as a conceptual modelling language for the
Semantic Web has become an important research topic. We argue that UML could
be a key technology for overcoming the ontology development bottleneck thanks to
its wide acceptance and sophisticated tool support. Transformational approaches are
a promising way of establishing a connection between UML and web-based ontology
languages. We compare some proposals for defining transformations between UML
and web ontology languages and discuss the different ways they handle the conceptual
differences between these languages. We identify commonalities and differences of
the approaches and point out open questions that have not or not satisfyingly been
addressed by existing approaches.

1 Introduction

The so-called Semantic Web [3] aims at enriching the World Wide Web with semantic in-
formation to enable systems to access and use information more efficiently. For this purpose
a number of annotation languages have been developed in order to annotate information re-
sources with content-related meta-data. In order to create, interpret and compare meta-data
annotations, ontologies, explicit definitions of the vocabulary used in an information source,
are needed. While meta-data can often be generated from the content of an information
source, the development of ontologies is likely to become the major bottleneck in scaling
up semantic annotations. Overcoming the modelling bottleneck requires a large number of
professional ontology builders equipped with powerful modelling tools. The current situation
is far from the required one. Today, ontologies are built by a small number of people, in most
cases researchers, with prototype tools that provide some basic functionality for editing and
storing ontological models. These tools have little in common with professional development
environments we know from the area of software engineering. Admittedly, the tool support
for ontological modelling has improved over the last years and editors are available now that



2 K. Falkovych et.al.

support consistency checking, import of existing ontologies and visualization of ontologies,
but at the moment it is unrealistic to claim that we can give these tools to non experts in
ontological modelling and expect good modelling results.

Recently, the Unified Modelling Languages (UML) has been identified as a way of pro-
viding a partial solution to the modelling bottleneck. Being the standard modelling language
in software engineering, UML has received wide attention not only in academia, but also
in professional software development. As a consequence, UML is much better supported in
terms of tools and available expertise than the emerging semantic web languages. The wide
acceptance of UML makes it an ideal language to be used by a critical mass of people to
build high quality models of information semantics for the semantic web. A number of re-
searchers have recognized the importance of UML with ontological modelling, especially for
the semantic web (e.g. [5]). In this paper, we discuss approaches, that are based on the idea
of transforming domain models between UML and semantic web languages, focusing on the
actual transformation between the two languages.

In the following, we contrast the different ideas behind UML and the semantic web lan-
guages concluding the resulting differences between these languages. Based on this high level
discussion, we turn our interest to transformations between these languages. We first identify
two slightly different use cases of employing transformations between UML and semantic
web languages. Afterwards, we outline some existing approaches and their specific solutions
to the transformation problem. After a discussion of the different choices made by different
approaches we identify a number of open issues with respect to transformation that are essen-
tial for using UML on the semantic web. We conclude with an outline of a research agenda
for an effective use of UML on the semantic web.

2 UML and Semantic Web Languages

The common feature of all transformation-based approaches to using UML on the seman-
tic web is the fact that they focus on the languages as such. Other important aspects such
as methodologies, modelling tools or reasoning support are assumed to be addressed by the
corresponding languages communities. In fact, the standardization of UML on the one and
OWL on the other hand has stimulated many developments around these languages that we
can take advantage of once we have transformed a model into the respective language. Con-
sequently, the central question in transformation-based approaches is concerned with the re-
lation between UML and the semantic web languages. In order to understand the technical
differences, it is important to recall a little bit of the history and the motivation that underlies
the two languages.

2.1 Unified Modelling Language UML

Aim: The UML language is designed in order to integrate competing proposals for mod-
elling languages in the area of software engineering. This integration effort was undertaken
in order to push object-oriented design methods into industrial practice by providing a well-
supported standard method that makes development processes more transparent.

Principles: UML is primarily designed as a language to be used by humans to document
and communicate software designs. As a consequence, the main notation of UML is de-



UML for the Semantic Web 3

fined in terms of a graphical model rather than a formal language. In order to capture formal
constraints, an additional constraint language (OCL) has to be used. Being an integration of
different pre-existing proposals, UML is rather the union of these approaches than an intersec-
tion and aims at maximal expressivity. In order to cover all aspects of a system, the language
uses different interacting diagram types each covering a specific aspect of the overall system.

Semantics: The fact that UML consists of different diagram types that interact with each
other makes it difficult to define a uniform semantics. The only approach to define the se-
mantics of UML that covers all diagrams is the meta-model approach. In this approach the
modelling elements of the language are defined in terms of UML class diagrams and OCL
constraints. Further, there are attempts to define formal semantics of parts of the language,
such as class diagrams or state charts. Validation and transformation methods for UML mod-
els have been defined on the basis of these partial semantics.

In order to capture the various aspects of complex software systems, UML consists of
not less than twelve different diagram types (according to OMG) each being designed to de-
scribe the system from a specific point of view. Four diagrams describe the static application
structure, five different aspects of the dynamic behavior, and three represent ways to organize
and manage the application modules. The class diagrams belong to the first category and they
have been in the center of attention because there exists a direct relation between their ele-
ments and the parts of an ontology (classes, hierarchies, class attributes and axioms). Some
language features, especially from the system structure part will be mentioned in the descrip-
tion of the transformation approaches in the following section. For a complete description of
UML we refer to the official specifications [14].

2.2 Web Ontology Language OWL

Aim: The goal of the Web Ontology Language OWL is to provide a standard language
for the representation of ontologies on the World Wide Web. Such a standardized language
will support the development of a web-based ontology infrastructure by providing editors,
storages, inference engines and meta-data annotation tools.

Principles: In order to fit into the general web architecture, OWL adopts a number of prin-
ciples, including a XML-based encoding and backward compatibility with RDF Schema, the
current W3C standard for conceptual modelling. As such, the language is designed to be
handled by systems rather than by human users. The provision of a well founded logical
semantics is a design principle of OWL. Beyond this, the developers of OWL follow the prin-
ciple of minimality: rather than including as many modelling features as possible, the OWL
language is restricted to a set of features that make logical reasoning feasible.

Semantics: OWL has a well founded semantics in the spirit of description logics [7], which
is established by an interpretation mapping into an abstract domain. The language is very
close to a specific description logic calledSHOIQ. Existing sound and complete reasoning
procedures for this logic can be used to provide reasoning support for OWL models.

As a result of the ongoing process of defining a standard ontology web language, a num-
ber of intermediate versions of the language have been defined. These languages differ in
some features, but their underlying design principles are similar. As different transformation



4 K. Falkovych et.al.

approaches refer to different language versions, we briefly outline the development at this
point. For details about differences between the languages, we refer to the original language
specifications.

OIL The Ontology Inference Layer OIL [10] has been developed in the On-to-Knowledge
project [11] as a language to support logical reasoning with and about ontologies. The
principle behind the language is to have different levels of expressiveness where the low-
est level is equivalent to RDF schema.

DAML The DARPA Agent Markup Language DAML [12] was developed in parallel with
OIL. The goal was to provide a common basis for the DAML project. DAML primarily
originated from the area of frame-based knowledge representation systems and hence it
is less influenced by formal logic than OIL.

DAML+OIL The name DAML+OIL resulted from the decision to create a joint language
on the basis of existing DAML and OIL. The language replaced DAML as the standard
language of the DAML project and was defined in an official committee. Two versions
of DAML+OIL exist, the March 2001 version [17] being more widely supported than the
December 2000 version [16].

OWL The Web Ontology Language OWL [6] is the label under which DAML+OIL under-
goes the process of becoming a W3C recommendation. OWL is based on DAML+OIL
with different levels of expressivity included in the language. There exist two versions of
the language: OWL Lite that includes restricted vocabulary sufficient to satisfy primarily
user needs and OWL Full with complete OWL vocabulary.

2.3 Conclusions

By comparing the natures of the two languages we can draw two conclusions. On the one
hand they complement each other. While UML is designed for model building by human ex-
perts, OWL is designed to be used at run time to provide guidance for intelligent processing
methods. This complementary character justifies the idea of combining OWL and UML in or-
der to overcome the acquisition bottleneck. On the other hand, we can see that the translation
is less than trivial, because of the differences between the two languages. The first challenge
is to identify corresponding elements in the two languages, which will sometimes be diffi-
cult, because UML is biased by the later implementation. Second, we have to make sure that
translations are backed by the semantics of the languages.

3 Existing Transformation Approaches

The benefits of using UML and DAML+OIL together have led to research where (1)UML
is used as a modelling syntax for knowledge representation languages such as DAML [1], or
(2) standard UML models are transformed into OIL or DAML+OIL ontologies [9], [8].

The first direction arose due to the fact that current ontology representation languages
lack representation possibilities such as a graphical front-end. As a recently emerged lan-
guage, DAML does not have sufficient tool support, while UML is a commonly accepted
graphical notation that can be used to build DAML ontologies. It was discussed in the previ-
ous section that UML and ontology representation languages have certain incompatibilities.



UML for the Semantic Web 5

These incompatibilities prevent the representation of all elements from the ontology repre-
sentation languages with the help of UML. In order to avoid this a number of extensions to
UML have been proposed.

The second direction addresses the problem of reusing previously specified knowledge.
UML models cannot be easily exchanged over the Web, the reasoning possibilities with UML
models being also quite restricted (see our arguments in section 4.2). To overcome these
difficulties [8] and [9] propose transformations between UML and ontology representation
languages.

These two directions induced the need to generate transformation rules between UML and
ontology representation languages. Differently aimed matching between languages caused
differences in the proposed mappings. While the first direction requires UML to be suited for
representing DAML ontologies, the second one addresses the question of how UML concepts
can be represented with an ontology representation language while preserving their semantics
as much as possible. In the rest of this section we introduce these approaches and discuss
transformation issues in more detail.

3.1 UML-based Tools for DAML

The first direction is represented by the work of Baclawski [1], where the relationships be-
tween UML and DAML have been investigated in order to provide support for visualizing
complex ontologies and managing the ontology development process. Baclawski proposes a
mapping between the two languages and gives a solution to the one of the most problem-
atic differences between the languages. The mapping is done from the UML point of view
while assuming that UML is used to represent DAML ontologies. As a consequence of this
assumption a number of the UML class diagram elements are not presented in the mapping
table. Although the paper focused at DAML, it remains valid for DAML+OIL.

It was argued in all related investigations that the biggest obstacle on the way to map UML
and ontology representation languages is the notion ofProperty . From the first glance the
notion of Property in knowledge representation languages corresponds to the notion of
association in UML. Property is a first-class modelling element in all web-based
knowledge representation languages starting from RDF(S). This means thatProperty can
exist as an independent element of a language without being attached to other constructs (such
as classes). At the same time UML associations are connected to classes with association
ends. An association cannot exist without explicit connections to classes. It also means that
each association is unique. Even if two associations have the same name they are connected to
different classes and thus they are considered to be different. Thus, UML associations express
local restrictions on instances of classes, while DAML properties in combination with other
elements can express local as well as global restrictions. An association has only one domain
and range, DAMLProperty can have more than one domain class. This makes it difficult
to propose a mapping that is correct at the conceptual level. Different approaches have been
proposed to tackle this problem, as discussed below.

To handle the difference between the notions of UMLassociation and DAML
Property Baclawski proposes an extension to the UML meta-model [1]. He suggests to
enrich the Meta-Object Facility (MOF) specification [15] with the notions ofProperty
andRestriction as it is shown in Figure 1.

Both Property and Restriction are modelled on the diagram as UML



6 K. Falkovych et.al.

C lass ifie r

Restric tion

P rope rty
1 ..n

0 ..n

1 ..n

0 ..n

onP rope rty

A ssoc ia tion

C lass

0 ..n1 ..n 0 ..n1 ..n

toC lass

A ssoc ia tionE nd

0 ..1

0 ..n

0 ..1

0 ..n

1

2 ..n

1

2 ..n

0 ..n

11

0 ..n

Figure 1: UML extension for property restrictions

Classifiers , enabling them to become first-class modelling primitives in UML. Also
Property is modelled as an aggregation of zero or more association ends, allowing it to
exist without being connected to a class. Each association end can be described by at most
oneProperty .

P erson D e pa rtm ent
be longs

Figure 2: DAML property restriction as UML diagram

According to the diagram, the notions ofProperty andAssociation are overlap-
ping to some extent, howeverProperty relates to a DAML element.Property can be
constrained by zero or moreRestrictions . A Restriction can be related to one or
more classes. This corresponds to a DAML construction of a property restriction to a class.
Consider the diagram in Figure 2. It represents a restriction on the propertybelongs to the
classDepartment .

By applying UML to DAML mapping the DAML translation of the UML diagram will
result in a section of an ontology, depicted in the following. This example gives the short
scenario of how the transformation works.

<daml:Class rdf:ID="Person">
<rdfs:label>Person</rdfs:label>
<rdfs:subClassOf>

<daml:Restriction >
<daml:onProperty rdf:resource="#belongs"/>
<daml:toClass rdf:resource="#Department"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="Department">
<rdfs:label>Department</rdfs:label>



UML for the Semantic Web 7

</daml:Class>

<daml:Property rdf:ID="belongs"/>

The inclusion of the proposed extension into a new UML 2.0/MOF 2.0 specification will
have an impact on existing tools, but the authors believe that this impact will not be much
bigger from the one anyway caused by the new specification. Moreover, it can lead to the
general acceptance of UML as a modelling tool for ontologies.

3.2 Transformations of Standard UML Models into Ontology Representation Languages

We discuss two representative approaches in this direction: the first proposes a mapping that
supports ontology extraction from UML diagrams; the second reports on using UML dia-
grams for modelling domain specific knowledge.

Extracting DAML+OIL Ontologies from UML Diagrams Falkovych [8] proposes a
transformation of UML diagrams into DAML+OIL ontologies with preserving the semantics
of UML concepts. This work emerged from an observation that there exist large sources of
ontological knowledge already available in design documents of existing applications. Ontol-
ogy extraction from UML diagrams and converting them into a powerful ontology represen-
tation language would enable reasoning about these ontologies and would allow knowledge
interchange between heterogeneous environments. Hence, the main contribution of [8] lays
in introducing a way of translating UML class diagrams into RDF(S) and DAML+OIL. Since
RDF(S) can be considered as a subset of DAML+OIL, the UML to RDF(S) transformation
is not discussed here.

All the issues about the differences between UML and DAML (DAML+OIL) discussed
in Baclawski’s work [1] are also relevant here. But the purposes of the work force us to
look from the different perspective at the transformation task. The mapping is proposed for
every UML element, which is possible to map into DAML+OIL constructs. For the complete
mapping table the reader is referred to [8]. In order to have better understanding about the
specificity of the mapping, the main issues are discussed below.

Since association is unique in UML, it is mapped intodaml:ObjectProperty with
a unique identifier for the property name. This makes it possible to distinguish different as-
sociations with the same name as different DAML+OIL properties.

UML attributes are mapped in a similar way, since each attribute has a local scope within
its class. An attribute is mapped intodaml:DatatypeProperty with a unique identifier
attached. The rationale of mapping an attribute only todaml:DatatypeProperty and
not to daml:ObjectProperty is that usually the type (range) of an attribute is a data
type. Although in UML an attribute can have an object as its type, this situation occurs in-
frequently. Thus, in this mapping the assumption was made that all properties that have an
object as a range are modelled as associations and not as attributes.

In order to preserve semantics of UML associations and to distinguish association ends,
a taxonomy of association types is introduced (Figure 3). The notion of an association in
the taxonomy is divided into four subtypes, namely binary association, unidirectional asso-
ciation, aggregation and composition, which are decomposed further into specific subtypes
introduced for the mapping purposes. At the lowest level of decomposition, which is not
present in the figure, all association types can have a name or be unnamed and they can have



8 K. Falkovych et.al.

Association

Binary Unidirectional

Following_direction Whole_of_part

Part_of_whole

C_whole_of_part

C_part_of_wholeOpposite_to_direction

Aggregation Composition

Figure 3: Taxonomy of association types

role names attached to association ends. All associations in a particular diagram are modelled
as sub-properties of corresponding association types from the taxonomy.

B ounda ry po int B ounda ry 
segm ent

1 ..n1

+fo rm+has

1 ..n1

Figure 4: Unnamed binary association with role names and multiplicity constraints

A binary association is navigable in both ways, thus it is mapped into two
daml:ObjectProperty elements, which are inverse (daml:inverseOf ) of each
other. These two properties have a name of an association with the unique identifier attached
to it (or just an identifier that serves as a property name in the case of an unnamed association)
and they are distinguished by adding an underline symbol (’’) to one of them. The need to
distinguish them comes from the need to map possibly present role names and multiplicity
constraints attached to the ends of an association. Roles give some additional meaning about
roles of classes in a relation, thus a role is specified asrdfs:subClassOf of an associa-
tion it is attached to. Cardinality constraints are specified for associations as well as for roles.
The example below clarifies these issues.

<daml:Class rdf:ID="Boundary point">
<rdfs:label>Boundary point</rdfs:label>
<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="1" >
<daml:onProperty rdf:resource="#has_G.4"/>
<daml:toClass rdf:resource="#Boundary segment"/>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="1" >
<daml:onProperty rdf:resource="#_G.2"/>
<daml:toClass rdf:resource="#Boundary segment"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="has_G.4">



UML for the Semantic Web 9

<rdfs:subPropertyOf rdf:resource="#_G.2"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="_G.2">
<rdfs:subPropertyOf rdf:resource="#binary_unnamed"/>

</daml:ObjectProperty>

<daml:Class rdf:ID="Boundary segment">
<rdfs:label>Boundary segment</rdfs:label>
<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1" >
<daml:onProperty rdf:resource="#form_G.3"/>
<daml:toClass rdf:resource="#Boundary point"/>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1" >
<daml:onProperty rdf:resource="#G.2"/>
<daml:toClass rdf:resource="#Boundary point"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="form_G.3">
<rdfs:subPropertyOf rdf:resource="#G.2"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="G.2">
<rdfs:subPropertyOf rdf:resource="#binary_unnamed"/>

</daml:ObjectProperty>

A unidirectional association is mapped in the same way with the difference that it is
navigable in one way and thus two sub-properties of this association are distinguished
(Following direction and Opposite to direction ). These sub-properties are
not the inverse of each other. The same issues apply to aggregation and composition where
different sub-property names are used to distinguish two ways of readability.

Domain-Specific Transformations An increasing interest in distributed problem solving
for configuration tasks arose the need to represent configuration services as Web Services.
To deal simultaneously with multiple service providers over a network and to interact with
other configurators a commonly used representation formalism is required. Semantic Web
languages such as OIL or DAML+OIL seem to be good candidates for such formalism. At
the same time configuration system modelling requires a participation of domain experts
and knowledge engineers. Knowledge representation languages are difficult to use during the
modelling stage. The work of Felfernig [9] provides a set of rules to automatically trans-
form configuration models represented in UML into an OIL representation. As such this
research corresponds to the second direction of existing transformation approaches. UML
elements for which the mapping is proposed constitute a configuration ontology. The set
of elements required for UML configuration profile consists of classes, generalizations, as-
sociations and aggregations (part-whole relationships). Compatibilities and requirements are
introduced through the stereotype associationsincompatible andrequires . Resources
are described by a stereotypeResource with produces andconsumes dependencies to



10 K. Falkovych et.al.

component types. The mapping of basic language constructs is similar with other approaches.
The specific issue, which we would like to discuss here, is a way of treating UML part-whole
relationships in OIL. The example below illustrates this (Figure 5):

Computer

Screen

whole
role1

role2
w_of_p

p_of_w
ubw

ubp

lbw

lbp

1..1

0..1
part

Figure 5: Graphical representation of part-whole relationships (taken from [9])

slot-def w-of-p
subslot-of Partofcomposite
inverse p-of-w
domain p
range w.

slot-def p-of-w
subslot-of haspart
inverse w-of-p
domain w range p.

p:slot-constraint w-of-p min-cardinality lbw w,

p:slot-constraint w-of-p max-cardinality ubw w,

w:slot-constraint p-of-w min-cardinality lbp p,

w:slot-constraint p-of-w max-cardinality ubp p,

Two classes involved in a relation are distinguished as ‘whole’ and ‘part’. Roles at-
tached to the part-whole relation are denoted withpart-of-whole (p-of-w) and
whole-of-part (w-of-p) names. Multiplicities are represented through lower and up-
per bounds of part and whole. Aggregation and composition are considered being disjoint. An
additional restriction in OIL is specified to indicate that a ‘part’ component that is connected
to a ‘whole’ component through a composition cannot be connected to any other component.
The source and target classes of a relation are mapped into thedomain andrange
OIL elements that occur due to the restrictive abilities of OIL with respect to DAML+OIL.
The distinctive feature of DAML+OIL is the ability to define local constraints of domain and
range, which correspond more to the UML notion of an association (see section 3.1).



UML for the Semantic Web 11

4 Discussion

4.1 Summary of the Comparison

After introducing the main features of the approaches in the sections above we would like to
underline differences and similarities between them.

Differences: The main difference between the approaches is the way they treat the seman-
tics of UML.

Baclawski aims at providing a presentation syntax for DAML. He uses stereotypes in the
mapping and proposes the extension to UML meta-model to make UML more expressive.
The extension closes the gap between the two languages and makes UML more suited for
representing DAML ontologies.

Falkovych approaches the problem in a different manner. The semantics of different
kinds of associations are included in a taxonomy, which is then explicitly transformed into
a DAML+OIL ontology. Every property that corresponds to a certain kind of an association
in a UML diagram is defined as a sub-property of a corresponding association type from the
taxonomy. In this way the semantics of associations is preserved after performing the trans-
formation from one language to another. Being part of the resulting ontology, they can be
used for example to ask for the relation between certain entities.

In the Felfernig work we saw an application of a transformation task to the configuration
domain. His research shows a specific way of treating UML diagram elements representing
a configuration model in OIL. The problem of the correspondence between UML association
and DAML property is introduced here through the example of part-whole relationships.
Since part-whole relationships are important for the configuration domain, Felfernig proposes
the way to explicitly represent the intended interpretation of these relationships in OIL. He
chooses a specific ontological interpretation of the part-whole relation that is most suited for
the domain at hand.

Similarities: The similarities between the mappings are shown in Table 1. In the table we
present an intersection of the mappings in order to specify the set of elements which are
mapped similarly in all the approaches.

4.2 Conclusions and Future Work

Comparing different approaches for transforming UML models into ontology languages for
the semantic web, we recognized that there is an agreement on how to translate a subset of
UML class diagrams in general (see Table 1). Beyond this common core, different approaches
take very different decisions of how to translate constructs. The actual choice for a specific
translation is always a result of the purpose of the translation. We think that this situation
that has naturally evolved in the parallel work of different authors actually points towards a
successful strategy for the transformation task. Such a strategy should start from the common
core mentioned above and make more specific transformation choices based on the intended
use of the resulting ontology.

Apart from this general strategy for transforming UML diagrams, the main insight we
got when looking at existing approaches is the fact that there are still many open questions



12 K. Falkovych et.al.

OIL [9] DAML+OIL [8] Pure UML DAML [1]

class-def c daml:Class class daml:Class
class-def c rdfs:label class name rdfs:label
subclass-of rdfs:subClassOf generalization rdfs:subClassOf
slot-def a daml:DatatypeProperty attribute daml:ObjectProperty or

daml:DatatypeProperty
slot-constraint a
cardinality 1 d

daml:toClass attribute type daml:toClass

slot-constraint daml:ObjectProperty binary /unidirectional
association

daml:ObjectProper

domain daml:Class
rdfs:subClassOf

source class of an association daml:Class
rdfs:subClassOf

range daml:toClass target class of an association daml:toClass
cardinality & cardinality multiplicity & cardinality
min-cardinality 1
max-cardinality 1

daml:cardinality=”1” 1 Unique/UnambiguousProperty
daml:cardinality=”1”

absence absence 0..* absence
min-cardinality 1 daml:minCardinality=”1” 1..* daml:minCardinality=”1”
min-cardinality 0
max-cardinality 1

daml:minCardinality=”0”
daml:maxCardinality=”1”

0..1 daml:minCardinality=”0”
daml:maxCardinality=”1”
Unique/UnambiguousProperty

min-cardinality n
max-cardinality n

daml:cardinality=”n” n daml:cardinality=”n”

min-cardinality m
max-cardinality n

daml:minCardinality=”m”
daml:maxCardinality=”n”

m..n daml:minCardinality=”m”
daml:maxCardinality=”n”

Table 1: Overview of similar transformation choices.

concerning the transformation between UML and OWL. We discuss open issues we consider
important in the following.

Implementation The question of how to implement these transformations comes naturally,
and indeed we can report distinct approaches in this sense. A very simple way to perform
these transformations is to take advantage of the XML encoding used in XMI (the serializa-
tion of UML) and DAML and to write an XSLT file that defines the transformation between
the two tree structures. This method was used in [5] to translate XMI to RDF(S) and java files.
We used this method in transforming XMI to DAML+OIL, as presented in [8]. In spite of the
simplicity of this implementation, our experience shows that XSLT is quite cumbersome to
use when one wants to express more complex mappings. In addition, it is very sensitive to
the format of the input file.

There exist at least two initiatives which provide plug-ins to UML editors extending their
functionality with the possibility to export UML diagrams into DAML. Within the CODIP
project1 a plug-in was developed which can be used both with Rational Rose and with another
UML editor, ArgoUML. Similarly, the UBOT2 tool suite includes a module for translating
UML to DAML. These tools are currently in their early development stages and we expect
more effort to be required in developing robust tools for such translations.

Reasoning Existing UML editors, such as RationalRose3, offer basic services for checking
UML models for syntactic errors. The range of support of checking the correctness of a model
gets considerably wider if the model is translated to a formal language.

1http://sylvester.va.grci.com/codipsite/codipsite/index.html
2http://ubot.lockheedmartin.com/ubot/
3http://www.rational.com/



UML for the Semantic Web 13

First, one can check the consistency of the models. This aspect is especially important
when it comes to ontology development and testing. Indeed, existing ontology editors offer a
consistency checking service. In the UBOT project the ConsVISor [2] tool is used to check the
consistency of the modelled ontologies. Based on Prolog (and planned to be migrated to Jess),
this tool returns both parsing and consistency errors. The SNARK theorem prover is used to
check logical inconsistencies. Similarly to UBOT, the OilEd ontology editor uses FaCT (Fast
Classification of Terminologies) [13] for consistency checking. FaCT is a Description Logic
(DL) classifier that can also be used for modal logic satisfiability testing.

Second, a formal representation allows deriving new knowledge by using inference en-
gines built for that particular representation. For example FaCT can derive new facts given an
original model. A direct way of assessing the quality of the existent transformation schemes
would be to (1) check the quality of their output and (2) measure the amount of information
that can be derived from their outputs.

Beyond Class Diagrams The mappings that we have described address the content of
class-diagrams. However, as we have stated earlier in this paper, UML is much richer. The
class diagrams have been in the center of attention because there exists a direct relation be-
tween their elements and the parts of an ontology (classes, hierarchies, class attributes). How-
ever, other types of diagrams express different types of information. For example state-charts
or activity diagrams are useful for service and process related ontologies. In this sense a pro-
posal exists to model DAML-S using UML diagrams4. There is no doubt that other UML
diagrams can also be used to model various knowledge aspects of the Semantic Web.

Rules UML provides a language for expressing rules, OCL. OCL is more complex than
the diagrams, however we can suppose that UML users have more experience with OCL
then with DAML. Also previously developed ontologies often describe axioms using OCL.
These considerations imply that the translation from OCL to DAML would be beneficiary
both for supporting modelling and exploiting existing models. The research in this direction
is hampered by two major problems. First, OCL does not have formal semantics and therefore
it is difficult to map it into a formal language. However there are more proposals for a formal
semantics for OCL [4]. Second, DAML is not developed to express rules. However there is
research going on to develop a rule language for the Semantic Web (DAML-L, RuleML).

Extended support for modelling With the existent transformations it is not guaranteed
that transforming a UML model to DAML and then transforming the DAML file back to
UML would lead to the same diagrams. A transformation that would preserve all information
would allow modelling and inferencing in parallel: a UML model would be transformed to a
formal language, new information would be derived and then presented back to the modeler
in UML format. This is a desirable functionality for powerful modelling tools.

Another observation is that the elements of class-diagrams are only enough to model
light-weight ontologies. Enriching these ontologies with rules and axioms would be possible
with OCL. Therefore, to build complex ontologies using UML the modelling tools have to
support transformations both for class-diagrams and OCL rules.

4http://codip.grci.com/codipsite/wwwlibrary/DUETGuide/DAMLS-UMLMappingV1.htm



14 K. Falkovych et.al.

Acknowledgements

We would like to thank Lynda Hardman, Martin Gogolla and Borys Omelayenko for valuable
comments for improvement and Frank van Harmelen for suggestions in early stages of the
work.

References

[1] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, and M. Aronson. Extending
UML to Support Ontology Engineering for the Semantic Web. InFourth International Conference on
UML, Toronto, October 1-5 2001.

[2] K. Baclawski, M. Kokar, R. Waldinger, and P. Kogut. Consistency Checking of Semantic Web Ontologies.
In First International Semantic Web Conference (ISWC 2002), Sardinia, Italy, June 2002.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.Scientific American, 284(5):35–43, 2001.

[4] M.V. Cengarle and A. Knapp. A Formal Semantics for OCL 1.4. In Martin Gogolla and Cris Kobryn,
editors,UML 2001 - The Unified Modeling Language. Modeling Languages, Concepts, and Tools. 4th
International Conference Proceedings, volume 2185 ofLNCS, pages 118–133, Toronto, Canada, October
2001. Springer.

[5] S. Cranefield. UML and the Semantic Web. InProceedings of the International Semantic Web Working
Symposium (SWWS), 2001. http://www.semanticweb.org/SWWS/program/full/paper1.pdf.

[6] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. Web Ontology Language (OWL) Reference Version 1.0. Working draft, W3C, November
2002. http://www.w3.org/TR/owl-ref/.

[7] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In Gerhard
Brewka, editor,Principles of Knowledge Representation, Studies in Logic, Language and Information,
pages 193–238. CSLI Publications, 1996.

[8] K. Falkovych. Ontology Extraction from UML Diagrams. Master’s thesis, Vrije Universiteit Amsterdam,
August 2002.

[9] A. Felfernig, G. Friedrich, and D. Jannach. UML as domain specific language for the construction of
knowledge based configurations systems.International Journal on Software Engineering and Knowledge
Engineering, 10(4):449–470, 2000.

[10] D. Fensel, I. Horrocks, F. van Harmelen, D. L. McGuinness, and P. F. Patel-Schneider. OIL: An Ontology
Infrastructure for the Semantic Web.IEEE Intelligent Systems, 16(2):38–44, 2001.

[11] D. Fensel, F. van Harmelen, Y. Ding, M. Klein, H. Akkermans, J. Broekstra, A. Kampman, J. van der
Meer, Y. Sure, R. Studer, U. Krohn, J. Davies, R. Engels, V. Iosif, A. Kiryakov, T. Lau, U. Reimer, and
I. Horrocks. On-To-Knowledge in a Nutshell.IEEE Computer, 2002.

[12] J. Hendler and D. L. McGuinness. The DARPA Agent Markup Language.IEEE Intelligent Systems,
15(6):67–73, November/December 2000.

[13] I. Horrocks. The FaCT system. In H. de Swart, editor,Automated Reasoning with Analytic Tableaux
and Related Methods: International Conference Tableaux’98, number 1397 in Lecture Notes in Artificial
Intelligence, pages 307–312. Springer-Verlag, Berlin, May 1998.

[14] Object Management Group. Unified Modeling Language (UML). http://www.omg.org/uml/.

[15] Object Managemet Group. Meta-Object Facility (MOF) Specification. http://cgi.omg.org/docs/formal/00-
04-03.pdf, April 2002.

[16] F. van Harmelen and I. Horrocks. Reference description of the DAML+OIL ontology markup language.
http://www.daml.org/2000/12/reference.html, december 2000.

[17] F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks. Reference description of the DAML+OIL (march
2001) ontology markup language. http://www.daml.org/2001/03/reference.html, march 2001.


