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Abstract. In this paper we propose algorithms for combining and ranking answers from 
distributed heterogeneous data sources in the context of a multi-ontology Question 
Answering task. Our proposal includes a merging algorithm that aggregates, combines 
and filters ontology-based search results and three different ranking algorithms that sort 
the final answers according to different criteria such as popularity, confidence and 
semantic interpretation of results. An experimental evaluation on a large scale corpus 
indicates improvements in the quality of the search results with respect to a scenario 
where the merging and ranking algorithms were not applied. These collective methods for 
merging and ranking allow to answer questions that are distributed across ontologies, 
while at the same time, they can filter irrelevant answers, fuse similar answers together, 
and elicit the most accurate answer(s) to a question. 
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1   Introduction  

Large-scale, open-domain question answering has been addressed with a variety of approaches 
in the last decades. Firstly, open domain Question Answering (QA) across unstructured Web 
data has been stimulated since 1999 by the TREC QA track evaluations. Secondly, the intuition 
that it would be easier to obtain answers from structured data (i.e., an ontology) where 
ambiguities in the queries can be resolved using reasoning techniques, has lead to much 
interest in Natural Language Interfaces (NLI) to knowledge bases, and in particular on NLI 
systems that directly query a given ontology [2, 4, 15]. However, although existing ontology-
based NLI systems are generally domain independent or portable across domains, their scope is 
limited to one (or a set of) a-priori selected domain(s) at a time. A third recent trend in 
obtaining structured answers in a an open domain scenario has seen several industrial startups 
such as Powerset, START, Wolfram Alpha, True Knowledge1, among others. A well-
established approach for these systems is to semi-automatically build their own comprehensive 
factual knowledge bases. For example, similarly to OpenCyc and Freebase2, the Wolfram 
Alpha knowledge inference engine builds a broad trusted knowledge base about the world by 
ingesting massive amounts of information (currently storing approximately 10TBs, still a tiny 
fraction of the Web). True Knowledge relies on users to add and curate its information, while 
PowerSet uses Freebase and annotates Wikipedia with its semantic resources. 

                                                             
1 http://www.powerset.com/, http://start.csail.mit.edu/, http://www.wolframalpha.com/index.html and        
  http://www.trueknowledge.com/ respectively. 
2  www.opencyc.org, http://www.freebase.com 



Differently from this last trend, PowerAqua [9] attempts to perform open domain QA by 
taking advantage of the freely available structured information on the Semantic Web (SW)3. 
This is a key difference as, unlike the previous systems, PowerAqua does not impose an 
internal structure on its knowledge nor does it claim ownership of its knowledge base, but 
rather explores the increasing number of multiple, heterogeneous knowledge sources available 
on the Web. As such, PowerAqua supports users in searching and exploring information on the 
SW. Users introduce a factual query in natural language and PowerAqua is able to match it into 
one or many ontological facts, from which an answer can be inferred. 

A major challenge faced by PowerAqua is that answers to a query may need to be derived 
from different ontological facts and even different semantic sources and domains. Often, 
multiple, redundant information needs to be combined (or merged) to obtain a reduced number 
of answers. Then, because different semantic sources have varying levels of quality and trust, 
when multiple answers are derived to a query it is important to be able to rank them in terms of 
their relevance to the query at hand. 

In this paper we present merging and ranking methods for combining results (answers given 
as ontological facts) across ontologies. These methods have been integrated in PowerAqua and 
evaluated in the context of a multi-ontology QA task. The question that we try to answer here 
is: are aggregated answers from many heterogeneous independent semantic sources better than 
answers derived from single ontological facts? Or, similarly to the hypothesis of Wisdom of 
Crowds4, are the many smarter than the few? These initial experiments confirm that the quality 
of derived answers can be improved by cross-ontology merging and ranking techniques.  

The rest of the paper is structured as follows. Section 2 introduces a motivating scenario, 
Sections 3 and 4 describe the merging and ranking algorithms respectively. Section 5 describes 
the evaluation setup and the analysis of the results. We present related work in Section 6, and 
conclude in Section 7. 

2   Motivating scenario: Question Answering on the Semantic Web 

Because PowerAqua derives answers from multiple online semantic resources, thus operating 
in a highly heterogeneous search space, it requires mechanisms for merging and ranking 
answers to generate a commonly agreed set of answers across ontologies. Consider, for 
example, the query “Which languages are spoken in Islamic countries?”. PowerAqua is 
designed following a cascade model (see Fig. 1). Steps 1, 2 and 3 are have been detailed in [9], 
so here we only summarize the key aspects of its behavior. At the first stage, the linguistic 
component using the GATE NL processing tool [5] transforms the NL query into an 
intermediate format called Query-Triples (QT). These QTs relate words together and mimic the 
structure of triples in the ontology but using the NL terms in the user query.  For instance, our 
example query is initially translated into the QT <languages, spoken, Islamic countries>.  

At the next step, the QTs are passed on to the PowerMap component, which identifies 
potentially suitable ontologies to answer a query, producing initial element level mappings 
between the QT terms and the entities in these sources. The output of PowerMap is a set of 
Entity Mapping Tables (EMTs), where each table associates each QT term with a set of entities 
found on the SW. To identify all semantic sources that are likely to describe QT terms, 

                                                             
3 To be precise, PowerAqua accesses multiple ontologies through the Watson semantic gateway 

(http://watson.kmi.open.ac.uk/WatsonWUI/) or by exploring information stored in online servers.  
4 A book written by Jame Surowiecki in 2004, primarily on the fields of economic and psychology, 

stating that “a diverse collection of independently-deciding individuals is likely to make certain types 
of decisions and predictions better than individuals or even experts.” It is also connected to social and 
collective intelligence on the Web (http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds).  



PowerMap maximizes recall by searching for approximate (lexical overlap) and exact (lexical 
equality) mappings. These are jointly referred to as equivalent mappings. PowerMap also uses 
both WordNet and the SW itself as sources of background knowledge to perform query 
expansion and to find lexically dissimilar (but semantically similar) matches – including 
synonyms, hypernyms and hyponyms. A semantic validation component attempts to generate 
WordNet synsets for all classes and individuals included in the EMTs. PowerMap uses the 
Watson5 semantic search engine as a gateway to the SW. In addition, PowerMap can also query 
its own repositories and offers the capability to index and add new online ontologies6. 
 

 
Fig. 1: PowerAqua components 

In the third step, the Triple Similarity Service (TSS) matches the QTs to ontological 
expressions.  The TSS takes as input the EMTs returned by PowerMap and the initial QTs, and 
returns a set of Triple Mapping Tables (TMTs), which define a set of complete mappings 
between a QT, and the appropriate Onto-Triples (OTs). The TSS chooses whenever possible 
the ontologies that better cover the user query and domain. In our example, as PowerMap does 
not find any covering ontology with mappings for both arguments in the QT: “languages” and 
“Islamic countries”, the TSS algorithm reiterates again by splitting the compound term 
“Islamic countries”, and consequently modifying the QT into: <languages, spoken, countries / 
Islamic> and creating a new QT for the compound <Islamic, ?, countries>. For the QTs 
obtained in this second iteration, the TSS extracts, by analyzing the ontology relations, a small 
set of covering ontologies containing the valid OTs that jointly cover the user query and 
produce an answer. The TMTs generated for each QT by the TSS are presented in Table 1.  

Table 1.  Triple Mapping Tables returned by PowerAqua for the example query. 

QT1: <languages,  spoken, countries / islamic> 
Dbpedia_infoboxes OT1 <language, regionalLanguage, Country> - 164 answers. E.g.: 

English (Pakistan), Arabic (Somalia), French (Algeria), Kurdish (Iran), Pashto (Pakistan), 
Welsh (United Kingdom), Albanian (Serbia), Catalan (Spain), Munji (Afghanistan).  

Dbpedia_infoboxes OT2 <language, states, country > - 713 answers. E.g.: 
Canadian_French (Canada), Japanese (Japan), Russian (Poland), Bukawa (Papau New 
Guinea,  Malay (Philippines), Filipino (Philippines), Hindi (India), Wakhi (Pakistan) 

QT2: <Islamic,  ?, countries> 
Dbpedia_infoboxes OT3 <country, governmenttype, Islamic_republic> - 3 answers :  

Afghanistan (Afghanistan), Islamic_State_of_Afghanistan, Iran, Pakistan  
Dbpedia_infoboxes OT4 <Country, country, Islamic University> - 1answer:  Bangladesh  
SWETO ontology OT5 <Country, occurred_in, Terrorist_Attack> 

<Terrorist_Attack, responsible_for, Armed Islamic Group> - 2 answers: 
Algeria (Aug31,1998,ArmedIslamicGroup_Bombing),   
France (Jul11,1995,ArmedIslamicGroup_Shooting)  

                                                             
5 http://watson.kmi.open.ac.uk/WatsonWUI 
6 PowerMap uses Lucene (lucene.apache.org) for the offline creation of the inverted indexes in order to 

provide efficient keyword searches to an ontology store in platforms such as Sesame. 



Finally, because each resultant OT only leads to partial answers, they need to be combined into 
one complete answer. The goal of the fourth component is to merge and rank the various 
interpretations that different ontologies may produce. In our example, this is achieved by 
intersecting the answers from both QTs to obtain as a final set of answers those in “languages 
spoken in a country” whose “country” is shared with the answers obtained from “countries that 
are Islamic”. Among other things, merging requires to identify similar entities across 
ontologies, e.g., “France” and “French republic”.  

In our example, from a total of 885 partial answers retrieved by PowerAqua the final set of 
answers obtained after merging contains 63 answers (e.g.: Aramaic (Iran), Abduyi_dialect 
(Iran), Kurdish (Iran), Pashto (Pakistan), Wakhi (Pakistan), among others.  However, from 
those 63 answers 57 are correct. The 7 incorrect answers are derived from the partial answer 
“France” from the SWETO ontology, namely the languages, regional languages or extinct 
languages in France: French, Breton, Zarphatic, Balearic, Shuadit, Judeo-Spanish, Basque. 
Nevertheless, ranking measures can be applied to sort the answers and filter these results. As 
will be explained in Section 4, a ranking measure based on OTs confidence is capable of 
providing a lower confidence to answers derived from the SWETO OT than OTs formed from 
other ontologies by a direct relationship. This example illustrates how merging and ranking 
algorithms can enhance the quality of the search results. We now describe these algorithms. 

3   Merging Algorithm 

A side effect of the fact that PowerAqua explores multiple knowledge sources to obtain an 
answer is that, the TSS frequently associates the query to several OTs from different 
ontologies, each OT generating an answer. Depending on the complexity of the query, i.e., the 
number of QTs it has been translated to and the way each QT was matched to OTs, these 
individual answers may fall in one of the following categories: a) valid but duplicated answers, 
b) part of a composite answer and c) alternative answers derived from different ontological 
interpretations of the QTs.  Different merging scenarios suit different categories: some cases 
require the intersection of the partial answers while other cases require their union. In this 
section we discuss the various merging scenarios (Section 3.1) and the fusion algorithm they 
rely on (Section 3.2). 

3.1   Merging scenarios  

Scenario 1 - A query translates into one QT only. These are the simplest queries, and therefore 
the easiest ones to merge, as each OT provides an answer on its own. The final set of answers 
is the union of all OTs across ontologies. E.g., “find me cities in Virginia”. 

Scenario 2 A query translates into two QTs that are linked together by the first QT term (the 
subject). Because each QT only leads to partial answers, they need to be merged to generate a 
complete response. This is achieved by intersecting the answers from both QTs. E.g., for the 
question “which Russian rivers flow into the Azov sea?” the final answers are composed by 
intersecting the results obtained with “rivers in Russia” and “rivers that flow in the Azov sea”.  

Scenario 3 A query translates into two QTs that are linked together by the object of the first 
one and the subject of the second one. In this scenario a complete answer can only be assigned 
by merging the partial answers. The answers for the first main QT are conditioned by the 
answers for the second QT. E.g., for the query “which rivers flow in European countries?” the 



final set of answers are the set of all countries in which rivers flow, <rivers, flow, country>, 
which are linked to the set of European countries <countries, ?, European>. 

Scenario 4 Complex queries which are translated into multiple QTs.  These queries are solved 
in a similar way as a combination of scenarios 1, 2 and 3. E.g., for the query “What are the 
main cities located in US states bordering Georgia?”, where Georgia is an ambiguous term that 
can represent a state in the USA or a country in the Caucasus, the valid answers come from the 
intersection or condition between first “cities in US states” and second “cities bordering 
Georgia” (both as a state and as a country) or “US states bordering Georgia”. Both alternative 
paths result in cities in the state of Georgia (USA), rather than those in the country of Georgia.  

In sum, the merging procedure deals with these four scenarios by applying three types of 
operators over the set of retrieved answers: union, intersection and condition. The union 
operator combines answers related to the same QT but coming from different ontologies 
(scenario 1). The intersection operator is needed when a query specifies more than one 
constraint for a single first query term (scenario 2). The intersection operator merges the 
answers from two corresponding QTs and removes those, which only occur in one answer set. 
The condition operator is similar to the intersection one; however, the condition operator filters 
the answers not by the first query term but by the second one (scenario 3). These operators can 
be applied to any complex cases in which the query is translated into several combinations of 
QTs (scenario 4) so all answers produced by alternative paths are merged. 

3.2   The co-reference fusion algorithm   

The merging procedure assigns the individuals returned as answers from different ontologies 
into subsets of answers that represent identical entities. The union operation processes a set of 
answers from a single QT and merges the similar answers representing identical entities. For 
example, the QT: <countries, locatedIn, Asia> returns, among its answers, “Thailand” from the 
TAP ontology and “Kingdom of Thailand” from the KIM ontology. These answers need to be 
grouped into a single subset as they refer to the same entity. As described above, depending on 
the query type, these subsets of answers can afterwards be combined by various operations.  

The atomic procedure performed by all of these operations is matching. Two answers are 
compared and a decision is made about whether or not they are identical. To increase the 
speed, initial matching is performed only between the labels and local names of the returned 
entities. The entities are considered identical either if they are WordNet synonyms or if one of 
the used string similarity functions (Jaro, edit distance) returns a value above a certain 
threshold. A special case is the processing of ambiguity, which occurs when an entity has two 
potentially identical matching entities that belong to the same ontology. E.g., in “Give me all 
cities in the USA,” a single entity, “arlington” from the FAO ontology, has two potential 
matches, “arlingtonVa” and “arlingtonTx” from the UTexas geographic ontology. Assuming 
that individuals belonging to the same ontology are distinct, the system tries to choose the best 
match out of the two using additional context data from the ontologies. The system receives, 
for each entity, all of their property values from their respective ontologies and compares these 
sets using the same similarity functions as above on their elements. Thus, in our example, 
context sets for both of the entities “arlington” and “arlingtonVa” mention “Virginia”, while 
“arlingtonTx” mentions “Texas” instead. The similarity between the context sets of “arlington” 
and “arlingtonVa” is greater and, therefore, these entities are merged.  

Pairwise comparison of entities would make the complexity of the procedure N2 with 
respect to the input set size. In order to avoid this, candidate matches are selected using a 



search over the indexes and the comparison focuses only on the entities that appear among the 
search results. This makes the complexity linear with respect to the answer set size. 

4.   Ranking algorithms 

As we can see in Fig. 2, a filtered set of answers for each query is obtained after the merging 
step. While an unsorted list of answers can be manageable in some cases, the search system 
may become useless if the retrieval space is too big. In these cases a clear ranking criteria is 
needed to sort the final list of answers. The aim of the ranking measures presented here is to: a) 
assign a score to each individual answer and b) cluster the set of answers according to their 
score. Cluster analysis of ranking data attempts to identify typical groups of rank choices. In 
our case, according to the chosen ranking criteria, clusters identify results of different quality, 
popularity or meaning. The cluster ranked at position one (C@1) represents the best subset of 
results according to the chosen ranking method.  

 
Fig. 2: Flow of the data retrieval, merging and ranking process.  

The ranking component defines three different ranking algorithms: 
• Ranking by semantic similarity: this ranking criterion exploits a semantic standard 

(WordNet) to compute the distance between OTs (Section 4.1). 
• Ranking by confidence: this ranking criterion is based on the confidence of the OTs from 

which the answer is extracted. The quality of the OT depends on the type of the mapping 
between the OT and the QT (e.g., direct or indirect - Section 4.2).  

• Ranking by popularity: this ranking criterion is based on the popularity of the answer, 
defined as the number of ontologies from which this answer can be derived (Section 4.3).  

4.1 Ranking by semantic similarity 

Answers are ranked according to the popularity of the semantic interpretation of the OT they 
belong to. The hypothesis behind this is that if an answer is derived from an OT that has 
similar interpretations to other OTs from different ontologies, it is more likely to be correct 
than answers coming from unique semantically different interpretations. This criterion takes 
advantage of the knowledge inherent in the ontology and WordNet high quality descriptions, 
and combines some well-founded ideas from the Word Sense Disambiguation community to 
compute semantic similarity distance across ontological entities as detailed in [8].  

Let’s clarify this idea with the example “Give me cities in Virginia”, a query matched by 
PowerAqua into eight ontologies (and eight OTs). The final set of answers obtained after 
merging should be the union of all the answers describing cities in Virginia. However, an 
instance labeled “Copenhagen” appears between the set of merged answers. In order to rank 
last this inaccurate answer, semantic similarity between OTs is computed by comparing the 
distance path and common ancestors between the WordNet synsets for each ontological 
concept representing the subject and object of the triple (predicates are not well covered in 
WordNet, and in the case of instances we look at its type). The WordNet synset (i.e. the true 



meaning) of an ontological term A, is determined by its parents in the hierarchy of the ontology 
(that is, those synsets of A that are similar to at least one synset of its ancestors in the 
ontology), and by its intended meaning in the user query (those synsets of A that are similar to 
at least one synset of the user term it matches to, if their labels differ). Having said that, while 
“city” has similar meanings in all its eight ontological matches (the synsets are semantically 
similar, even if they are not exactly the same), the ontological meaning of “Virginia” differs. 
Indeed, seven of the ontologies are referring to Virginia as an instance of an state or province 
(in USA), while the answer “Copenhagen” is derived from an eighth ontology about film 
festivals with the only semantically different OT, namely <city, hasActorWinner, 
VirginiaMadsen>, where “VirginiaMadsen” is classified as person in the ontology and not as a 
state, and therefore the intended meaning of the OT differs from the previous ones. 

Ranking among answers is then calculated according to the popularity of the interpretation 
of the OT they belong to. Therefore, the first complete set of ranked answers comes from the 
union of the answers from the seven semantically similar OTs referring to cities in the state or 
province of Virginia. The answer, labeled “Copenhagen” because its derived from the only 
semantically different OT, it would be ranked lower than the previous answers.  

To conclude with, the score for each answer is the number of ontologies that share the 
semantic interpretation of the OT they belong to, or -1 if an answer is coming from two OTs 
with different semantic interpretation. The C@1 groups all the answers ranked with score 2 or 
highest (at least two ontologies with the same semantic interpretation). 

4.2. Ranking by confidence 

The quality of the matching between a QT and one (or, in some cases, two) OTs often has an 
influence on the quality of the derived answers. We identified a set of rules to predict which of 
these OTs are likely to be more reliable and potentially lead to a better set of answers. These 
rules are listed in the same order as they are applied, i.e., from the most to the least significant. 
The rules we use can be seen as nodes in a decision tree. Their order of preference is 
discriminative in order to avoid conflicts. 

1) OTs that are based on only equivalent (i.e., exact and approximate match) or synonym type 
mappings to the corresponding QT terms are ranked highest. E.g., for QT <capitals, ?, USA> 
(“Find me capitals in the USA”) the OT1 = <capital (exact), isCityOf, State> <State, 
isStateOf, USA (exact)> with only equivalent mappings is ranked higher than OT2 =<City 
(hypernym), attribute_country, USA (exact)> which contains an hypernym. 

2) OTs that link the two arguments in the QT through an IS-A relation (instead of an ad-hoc 
relationship) are ranked lower than any other triples. The reason for this is that many online 
ontologies misuse IS-A relations to model other types of relations (e.g., partonomy). We do 
not apply this rule when the original question contains an IS-A relation, as this is an 
indication that such a relation is expected (e.g. “which animals ARE reptiles?”). For instance, 
the QT <person, plays, Nirvana> (“Who play in Nirvana?”) is matched to OT1 = <person, 
hasMember, MusicianNirvana> and OT2 = <Nirvana Meratnia, IS-A, person>. Note that 
while rule 1 ranks these two triples equally, this rule ranks OT1 higher (even if, in this 
particular case, OT2 complies with correct modeling). 

3) OTs that cover not only all of the terms in the QT, but also the linguistic relation (mapped as 
an ontological entity), are ranked first over triples that do not cover the relation. E.g., for the 
QT <states, bordering, Colorado> (“what are the states bordering Colorado?”) the OT <state, 
borders, Colorado (state)> is ranked higher than <state, runsThrough, Colorado (river)>.   

4) The OTs containing more exact mappings are preferred. E.g., for QT <london, capital, 
country> (“is London the capital of any country?”), the OT <London (exact), hasCapitalCity, 



Country(exact)> is preferred over <capital_city (synonym), has_capital_city, country 
(exact)>. This rule is similar to rule 1, but because it is applied at a later stage, it is more 
restrictive. 

5) For “who queries”, OTs formed with “person” are preferred over “organization”. 
6) OTs based on direct mappings (1:1 mapping between a QT and an OT) are preferred to those 

relying on indirect mappings (1:2 mapppings). E.g, <person, works, open university> (“who 
works in the open university?”) is translated to both OT1= <person, memberOf, 
openUniversity> and to OT2 = <person, mentions-person, kmi-planet-news (subclassOf 
publication)>, <kmi-planet-news, mentions-organization, the-open-university>. OT1 is 
ranked higher than OT2. 

Once the score is assigned to each answer the clusters are created as follow: C@1 is all the 
answers ranked highest (score 1), C@2 is all the answers ranked in position 2, and so on. 

4.3 Ranking by popularity 

Finally, answers are ranked according to their popularity, i.e., the number of individual 
ontologies from which they are derived. For instance, “where is Paris?” produces two answers: 
France (or French Republic) and United States (as Paris is a city in the state of Texas). In this 
case, France is the most popular answer across ontologies and therefore is ranked first. The 
number of ontologies for a given answer is provided by the merging algorithm described in 
section 3. An answer is C@1 if its popularity is higher than 1 (more than 1 ontology). 

4.4 Ranking by combination 

Finally, we propose a last strategy to improve ranking, by the combined use of all the ranking 
methods presented before. We argue that, due to the different nature of these approaches, 
relevant answers not selected and irrelevant answers not filtered by one specific method, are 
suitable to be selected or filtered by the others. For the combination strategy we have used the 
weighted Borda method [1], in which votes are weighted taking into account the quality of the 
source. The combined weight for the answer i within the context of the query q, Wi,q,  is 
therefore computed as: Wi,q = 2*x (x=1, i ∈ confidence C@1) + 1*x (x=1, i ∈ confidence 
C@2) + 1*x (x=1, i ∈ semantic similarity C@1) + 1*x (x=1, i ∈  popularity C@1).  

We have empirically tested that the most important ranking algorithm is confidence. With 
the proposed combination we attempt, on the one hand, to provide this measure for a 
significant number of answers (selecting C@1 and C@2) and, on the other hand, to provide a 
higher score to those answers with a higher confidence value. Once the scores are computed 
each answer is then clustered according to: a) its final score value and b) the selected degree of 
relevance for precision and recall measures in the final answer. To maximize precision, C@1 is 
generated with all the answers for which Wi,q > 1. To maximize recall, C@1 is generated with 
all the answers for which Wi,q >2. 

5   Evaluation 

In this section we describe the evaluation of PowerAqua’s merging and ranking capabilities for 
queries that require to be answered by combining multiple facts from the same or different 
ontologies. The design of this evaluation is focused around two main questions: 



a) How do we measure if the quality of the collective results obtained after merging and 
ranking are better than the individual answers? 

b) Which datasets are more suitable to be used for this evaluation? 

Because there are different steps in the merging and ranking process that can influence the final 
quality of the answers, we have divided the evaluation in three main stages: 
• Evaluation of the efficiency and effectiveness of the fusion algorithm. 
• Evaluation of the level of filtering performed by the merging algorithm over the initial set 

of answers retrieved by PowerAqua. 
• Evaluation of the three proposed ranking algorithms applied to the final set of answers 

obtained after the merging process. 

This initial evaluation is conducted using our own benchmark which comprises: 
• Ontologies and Knowledge Bases: We collected around 4GBs of data stored in 130 Sesame 

repositories. Each repository contains one or more semantic sources. We have collected in 
total more than 700 documents. The dataset includes high-level ontologies, e.g., ATO, 
TAP, SUMO, DOLCE and very large ontologies, e.g., SWETO (around 800,000 entities 
and 1,600,000 relations) or the DBPedia Infoboxes (around 1GB of metadata). This set of 
ontologies is stored in several online Sesame repositories. Even though PowerAqua can 
access larger amounts of SW data through Watson, in this experiment we decided to use a 
substantial static dataset in order to make these experiments reproducible. 

• Queries: We collected a total of 40 questions selected from the PowerAqua website7 and 
from previous PowerAqua evaluations that focused on its mapping capabilities [10]. These 
are factual questions8 that PowerAqua maps into several OTs, each of them producing 
partial answers. Merging and ranking is needed for these queries to generate a complete 
answer, or to rank between the different interpretations. 

• Judgments: In order to evaluate the merging and ranking algorithms a set of judgments over 
the retrieved answers is needed. To perform this evaluation two ontology engineers 
provided a True/False manual evaluation of answers for each query. 

The construction of this benchmark was needed due to the lack of SW standard evaluation 
benchmarks comprising all the required information to judge the quality of the current 
semantic search methods [7].  

5.1 Evaluating the fusion algorithm  

The gold standard for the evaluation of the merging algorithm was created by manually 
annotating the answer sets produced by the 40 test queries. For each answer set, subsets of 
identical answers were identified. The generated gold standard was compared to the fusion 
produced by the merging algorithm and standard precision and recall measures were 
calculated. Each pair of answers correctly assigned to the same subset was considered a “true 
positive” result, each pair erroneously put into the same subset constituted a “false positive” 
result, and each pair of individuals, which were assigned to different subsets, while being in the 
same subset in the gold standard, represented a “false negative” result. The results are shown in 
Table 2. 

                                                             
7http://technologies.kmi.open.ac.uk/poweraqua/fusion-evaluation.html 
8 Factual queries formed with wh-terms (which, what, who, when, where) or commands (give, list, show, tell,..) vary 

in length and complexity:from simple queries, with adjunct structures or modifiers, to complex queries with relative 
sentences and conjuctions/disjunctions 



Table 2. Test results of the co-reference resolution stage 

Gold standard size Precision Recall F1-measure 
1006 0.946 0.931 0.939 

When analyzing the results we found that most errors of the merging stage were caused by: 
• Syntactically dissimilar labels for which no synonyms could be obtained from WordNet, 

e.g: #SWEET_17874 (Longview/Gladewater), or grammatical mistakes (like 
“she_sthe_one” instead of “she_the_one”). 

• Homonymous or syntactically similar labels for different entities. 
• Incorrectly modeled ontologies, which contain duplicate instances under different URIs: 

e.g., in SWETO the city of Houston, Texas has 5 distinct URIs. Since such errors were not 
caused by the merging algorithm, they were not counted during the evaluation experiments. 

5.2 Evaluating the level of filtering performed by the merging algorithm 

The major advantage of merging the multiple answers derived by PowerAqua is that irrelevant 
answers are filtered out (eliminated). The filtering obtained by the merging algorithm described 
in this paper allows, on the one hand to eliminate duplicated information by means of fusing 
redundant answers together and, on the other hand, to compose a complete answer using 
different subsets of partial responses. The filtering of duplicated and partial information helps 
to eliminate non relevant responses from the initial set of results. The following measure is 
used to compute the level of non relevant results filtered by the merging algorithm.  

! 

fq =
|Rq |" |Rqm |

|Rq |

 

Where fq  is the percentage of filtering for the query q, Rq  is the set of initial results retrieved by 
PowerAqua for the query q and Rq,m is the set of answers that remain after merging. Note that, 
for simplicity, we consider that all the eliminated answers are irrelevant. This is not necessarily 
true when the merging algorithm intersects partial answers. For those cases, the rate of false 
positives (or number of relevant results lost in the filtering process) has been computed (section 
5.1) and discarded as irrelevant.  Results are presented in Section 5.4 

5.3 Evaluating the three proposed ranking algorithms 

Here we present the evaluation of the three ranking algorithms detailed in Section 4 in terms of 
Precision and Recall. As the golden standard for the evaluation we consider the completed list 
of answers for query q including all the potential relevant and irrelevant results as the unsorted 
list of answers obtained after the merge step, Rq,m  (see Fig. 2 for further details). For each 
ranking metric we consider as retrieved list of answers for the query q the first ranked cluster 
(C@1). Taking into account this, we define Precision and Recall as: 
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Pq =
|{Re lq "C@1q} |

|C@1q |
,Rq =

|{Re lq "C@1q} |
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Where: Pq  is precision for query q, Rq is recall for the query q, Relq is the set of relevant 
answers included in Rq,m for the query q and C@1,q  is the set of retrieved answers, or answers 
included in the first ranked cluster. 

Once these measures have been defined we compare the results obtained by our three 
different ranking metrics against our baseline, Rq,m. For the ranking based on confidence the 
precision is computed not just for the first ranked cluster C@1 but also for the union of the first 



two clusters C@1 U C@2. As explained in Section 4.4, the most accurate ranking algorithm is 
confidence, therefore both confidence clusters are used in the combined ranking. 

5.4 Results 

The results of our experiments are reported in Tables 3 and 4 for the 40 selected queries. Table 
3 contains the queries merged by union while Table 4 contains the results for the queries 
merged by intersection and condition. The different columns of the table represent:  
1) The type of merging done for that query (U=union, I=intersection, C=condition) / the 

number of ontologies involved in the merging process. 
2) The percentage of irrelevant queries filtered by the merging algorithm. 
3) The precision obtained for the set of answers returned after the merging process (the 

baseline ranking). 
4) The error type as explained below. 
5) Precision/Recall measures for the confidence ranking at the level of the first cluster C@1. 
6) Precision/Recall measures for the confidence ranking at the level of the first two clusters 

C@1 U C@2. 
7) Precision/Recall measures for the popularity ranking at the level of the first cluster C@1. 
8) Precision/Recall measures for the semantic similarity ranking at the level of the first 

cluster C@1. 
9) Precision/Recall measures for the combined approach at the level of the first cluster C@1 

with the target of optimizing recall. 
10) Precision/Recall measures for the combined approach at the level of the first cluster C@1 

with the target of optimizing precision. 
An empty sets {} represent that no answer was retrieved for that cluster while – indicates that 
the query generates only 1 unique answer after merging, and therefore there is nothing to rank. 

As we can see in the tables, the merging component is able to filter an average of 93% of 
irrelevant answers for intersections/conditions and 32% for unions. For instance, in Q14: find 
me university cities in Japan, 20 final answers are selected out of 991 partial answers, by 
intersecting 417 from cities with a university from dbpedia ontology and 574 from cities in 
Japan from fao, ato, KIM, tap, SWETO. The average recall of the fusion algorithm, as shown in 
Section 5.1, is 0.93, i.e., a 0.07 loss in recall occurs in the case of intersections/conditions when 
partial answers representing the same individual are not recognized. The average precision of 
the fusion algorithm is 0.94, which indicates that most of the answers are correctly fused. The 
high precision and recall values obtained for the fusion algorithm, as well as the high 
percentage of filtering of irrelevant answers performed by this method, reflect PowerAqua’s 
ability to derive valid semantic interpretations to a query across ontologies.  

The causes of the merging algorithm leading to irrelevant results in the final answers are: 
• Incorrect modeling of the ontological elements in the OTs that lead to the answer (M). For 

instance in Q30: what mountains are in Alaska?, the instance Germany is given as an 
answer because it is defined as rdf:type {country, mountain} in one of the ontologies. 

• An inaccurate semantic interpretation given by PowerAqua (I). For instance Q36: who 
belongs to the Open University?. Among OTs representing people that work for the Open 
University, there is an OT : <organization, type, open universities>. 

• Retrieval of irrelevant answers (R). E.g., the answer Houston to Q29: Where is Houston? 
These sets of errors are often filtered out afterwards by the ranking algorithms. As we can see 
in the tables, for the union queries all ranking methods are able to provide better precision than 
the baseline, with an increase of 0.22 points of precision for the best ranking algorithm, in this 
case ranking by confidence at C@1. This increase in precision is usually translated in a recall 



loss as in the case of the popularity ranking algorithm where recall drops to 0.31. However, the 
rest of the ranking metrics are able to keep the recall measure between 0.77 and 0.94. Finally, 
the best combined approach is able to enhance with 0.12 points the precision of the baseline 
without causing a drop in recall.  

5.4 Discussion on the Results 

For the intersection and condition queries all the ranking methods are able to keep or increase 
the precision, except in the case of the popularity algorithm that decreases precision to 0.31 
points. The same effect occurs with recall. All the ranking algorithms are able to provide levels 
of recall between 0.98 and 1, which means nearly no loss of relevant answers, except for the 
popularity ranking, which reduces recall to 0.54. The best ranking method for intersection and 
condition queries is the ranking by confidence at C@1. This ranking slightly increases 
precision with 0.03 points with respect to the baseline, keeping at 0.98 the level of recall. 
Finally, for this set of queries, the best combined approach is able to preserve the same 
precision and recall values as the baseline: 0.96/1. In other words, the effect of ranking 
measures on intersection queries is neutral, this was expected as for intersection and condition 
queries the filtering has already eliminated most (if not all) of the inaccurate answers.  

In summary, we can say that the best ranking method for both subset of queries is the 
ranking by confidence at C@1 that is able to produce a 0.22 percentage increase of precision 
for union queries and a 0.03 for intersection ones. Semantic similarity depends on being able to 
calculate the semantic interpretation of each OT, but that’s not the case if the OT entities are 
not covered in WordNet, or the taxonomical information is not significant enough to elicit the 
meaning of the entity in the ontology. The worst ranking method in both cases is ranking by 
popularity. It drops precision by 0.14 points for union queries and by 0.31 points for 
intersection and condition queries. This is because popularity at C@1 (answers obtained from 
at least two ontologies) is empty in the cases in which no answers were fused from different 
ontologies (empty set {} being equivalent to 0/0 for precision/recall). Interestingly, in the 25 
cases where C@1 is not empty, this measure gives precision 1 in 22 cases. Therefore, precision 
would have been closer to 1 than with any other ranking if we would have chosen to C@1 all 
the answers with popularity 1, when there are not answers with popularity 2 or higher (empty 
set {} equivalent to 1/1 for precision/recall as all the answers are rank at the same level). The 
effect in recall is even worse, dropping to 0.31 for union queries and to 0.54 for the intersection 
and condition ones. At this early stage of the SW, PowerAqua’s results are hampered by the 
knowledge sparseness and its low quality. We believe that any extension of the online 
ontologies and semantic data will result in direct improvements for both popularity and 
semantic similarity ranking measures. 

Even with the different behavior of these ranking methods, the combined algorithm is over-
performed by the confidence ranking in terms of precision but it is able to improve the 
precision and recall ratio. Contrary to what was expected, maximizing precision does not 
improve the precision value on the combined measure. This is because the average measure 
was affected by queries in which none of the answers ranked high enough (C@1={}). 

These results confirm our initial hypothesis that the use of cross-ontological information to 
rank the retrieved answers helps to enhance the precision of the results, and therefore, to 
provide, from the wisdom of semantic crowds, better answers to users. An important remark is 
that, this increase of precision does not imply, in any case except for the popularity algorithm, 
a significant loss in recall. 



Table 3. Test results for union queries 

 

Table 4. Test results for intersection and condition queries 

 

6   Related Work 

The problem of retrieving information by means of the aggregation of data from different 
sources on the Web has been tackled in Sig.ma (http://sig.ma/). In this system the user enters a 
keyword and is able to explore all the aggregated data coming from the search engine Sindice. 
Their contribution at this early stage of the SW is to show that “the sum is really bigger that the 
single parts”. The system uses large scale indexing, data aggregation heuristics, and ontology 



alignments for automatic semi-structured data discovery and consolidation. However, as 
opposed to our approach, sig.ma does not attempt to automatically disambiguate or rank 
between different interpretations. 

More specifically, the problem of merging, or finding identical individuals, was mostly 
considered in the context of offline data fusion scenarios. Basic similarity metrics based on 
string comparison were developed in the database community (e.g., [16, 3]). These metrics are 
used as a basis for the majority of algorithms, which compare values of attributes of different 
data instances and aggregate them to make a decision about two instances referring to the same 
entity (see [6] for a survey). The main distinction of our work is that, in the PowerAqua 
scenario, the fusion of answers is done in real time. 

The problem of ranking applied to semantic search results has been also addressed in the 
literature. Among these works we can highlight [10, 11, 13]. [10] provides a criterion for query 
result ranking in the SEAL Portal based on a similarity measure between query results and the 
original KB without axioms. [11] proposes the expansion of query results through arbitrary 
ontology relations starting from the initial query answer, where the distance to the initial results 
is used to compute a similarity measure for ranking. [13] proposes a sentence ranking scheme 
based on the number of times an instance appears as a term in a relation type, and the 
derivation tree by which a sentence is inferred. To our knowledge, none of these works is 
applied to results derived from different knowledge sources, therefore, they do not consider the 
so-called “wisdom of the crowds” paradigm within their ranking algorithms. 

7   Conclusions and Future Work 

In this work we present a set of merging and ranking algorithms that aim to integrate 
information derived from different knowledge sources in order to enhance the results obtained 
by semantic search systems. These algorithms have been integrated and tested in an open QA 
system, PowerAqua. The experiments are promising, showing that the ranking algorithms can 
exploit the increasing amount of collectively authored, highly heterogeneous, online semantic 
data, in order to obtain, more accurate answers to a questions. On the one hand, the merging 
algorithm is able to filter out a significant subset of irrelevant results. On the other hand, the 
ranking algorithms are able to increase the precision of the final set of, thus showing a deeper 
semantic “understanding” of the intent of the question. 

The merging algorithm is able to filter out up to 91% (32% on average) for union-based 
queries, and up to 99% (93% on average) for intersection based queries. 

The best ranking algorithm (ranking by confidence) is able to obtain an average of 96% 
precision for union queries and 99% for intersection queries. An interesting, observed, side 
effect of this approach is that, answers to some questions that are distributed across ontologies 
can only be obtained if the partial results are merged. In this case, the introduction of the 
merging algorithm provides PowerAqua with the capability to answer queries that cannot be 
answered when considering a single knowledge source. 

The high precision values produced by the merging and ranking algorithms, that are 
responsible for amalgamating information from different sources, support the comparison with 
the idea of the Wisdom of Crowds that we suggested in the paper. We further observe that it is 
known that the Wisdom of crowds only works if the crowd is diverse and free to think 
independently[14], allowing it to converge on good solutions. Similarly PowerAqua works 
well where ontologies have different emphasis, to allow the assembly of composite answers, 
but also overlaps between ontologies exist, to allow mapping and identification of ranking 
criteria, such as popularity. Both too much homogeneity and isolated "silo" ontologies would 
weaken our approach. 



Another interesting side-effect of this approach is that, apart from the obvious advantage to 
the final user, the filtering of negative results and the ranking capabilities of the retrieval 
system increase its adaptability for other tasks, e.g., query expansion using SW resources. 

An issue remains nonetheless open: the use of our own dataset to perform the experiments. 
However, to our knowledge, the SW community has not yet proposed standardized 
benchmarks to evaluate semantic merging and/or ranking evaluation. Despite this fact we have 
tested our algorithms with a significant amount of queries and large amounts of distributed 
semantic metadata (around 4GB). 

Finally, we are currently working on a trust propagation mechanism where the user can rank 
the answers as a way of giving feedback to the system. We believe that this mechanism will 
further improve the ranking so that answers replicated across many ontologies do not bias less 
frequently occurred facts generated from specialist knowledge from trusted ontologies. 
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