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Abstract. Semantic Web Services (SWS) aim to alleviate Web service limita-
tions, by combining Web service technologies with the potential of Semantic 
Web. Several open issues have to be tackled yet, in order to enable a safe and 
efficient Web services selection. One of them is represented by trust. In this 
paper, we introduce a trust definition and formalize a model for managing 
trust in SWS. The model approaches the selection of trusted Web services as 
a classification problem, and it is realized by an ontology, which extends 
WSMO. A prototype is deployed, in order to give a proof of concept of our 
approach.  
 
Keywords: Semantic Web services, Selection, Trust, Classification  

1 Introduction 

Semantic Web services (SWS) research aims at automating the development of Web 
service-based applications through semantic Web technology. By providing formal 
representation with well-defined semantics, SWS facilitate the machine interpretation 
of Web service (WS) descriptions. According to SWS vision, when a client expresses 
a goal that it wishes to achieve, the most appropriate Web service is automatically 
discovered and selected on the basis of the available semantic descriptions. Since the 
user does not know a priori the selected WS, the notion of trust should play an impor-
tant role during the WS selection phase. However, the most common approaches for 
describing SWS, such as WSMO [3] or OWL-S [12], do not currently provide ex-
haustive means to model trust, and thus do not support trust-based selection of WS.  

Notice that trust is a multifaceted concept. A trust understanding can indeed in-
volve multiple – and not always the same - parameters, such as Quality of Service 
(QoS), reputation and security.  

In our opinion, the main issue with representing trust in all its faces lies in its con-
textual nature – i.e. the same user may have different trust understandings in different 
contexts. For example, a user may trust a WS with a highly rated security certificate 
whenever she has to provide her credit card details. Conversely, the same user 
weights the opinions of past users about a specific WS in other situations – i.e. the 
evaluation of the WS reputation is a priority in the current trust understanding of the 
user. Moreover, distinct users may privilege different trust parameters in the same 



context; in this case, their priorities may depend on their different personal prefer-
ences.  

In this paper, we introduce a definition and formalize an abstract model for trust in 
SWS that enables interacting participants – i.e. both WS users and providers - to rep-
resent and utilize their own trust understanding with a high level of flexibility, and 
thus take the possible multiple interacting contexts into account. The essential contri-
bution of our approach is therefore a generally applicable yet completely automated 
mechanism for selecting trusted services according to context-specific criteria.  

Specifically, in our model we characterize the trust-based WS selection as a classi-
fication problem. Firstly, all participants specify their own requirements and guaran-
tees about a set of trust parameters. Then, at runtime, our goal is to identify the class 
of WS that matches the trust statements of involved participants, according to an es-
tablished classification criterion. To accomplish this, we have based the proposed 
model on a general-purpose classification library. 

In order to apply our approach to an existing SWS working environment – and thus 
verify its benefits - we represented our model within a specific ontology: Web Ser-
vices Trust-management Ontology (WSTO). The latter makes use of WSMO as refer-
ence approach for SWS. WSMO is in fact the underlying model of IRS-III [2], the 
SWS execution environment developed within our research group. As a result, we en-
hanced IRS-III with the trust-based selection of WS. 

It is worth highlighting that an earlier version of WSTO was described in a previ-
ous work [5]. Whereas in [5] we outlined the idea of characterizing trust as a classifi-
cation process, in the present work we propose a more complex model that is able to 
accommodate multiple trust understandings and parameters. Moreover, while in [5] 
we proposed a general thesis on the different meanings of trust, we did not supply our 
definition of trust. We now provide our trust definition as well as its formal seman-
tics. 

The paper is organized as follows: Section 2 provides the background knowledge 
useful for placing our work; in Section 3, we outline our approach, while in Section 4 
we provide the formal details of our methodology; in Section 5, we describe an im-
plemented application; Section 6 compares our approach with related work and, fi-
nally, Section 7 concludes the paper and outlines our future work.   

2 Background 

In this section, we first outline WSMO, our basic vision of SWS, and its ontological 
specification. Then, we outline the different existing approaches on trust. 

 
WSMO. 
The Web Service Modelling Ontology (WSMO) [3] is a formal ontology for describ-
ing the various aspects of services in order to enable the automation of Web service 
discovery, composition, mediation and invocation. The metamodel of WSMO defines 
four top level elements: 
• Ontologies provide the foundation for describing domains semantically. They are 

used by the three other WSMO elements. 
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• Goals define the tasks that a service requester expects a Web service to fulfill. In 
this sense they express the requester’s intent. 

• Web Service descriptions represent the functional behavior of an existing de-
ployed web service. The description also outlines how web services communicate 
(choreography) and how they are composed (orchestration). 

• Mediators handle data and process interoperability issues that arise when han-
dling heterogeneous systems. 

One of the main characteristic features of WSMO is the linking of ontologies, 
goals and web services by mediators which map between different ontological con-
cepts within specific WSMO entity descriptions. In order to facilitate appropriate 
mapping mechanisms, four classes of mediators are considered within WSMO. For 
example, an OO-mediator may specify an ontology mapping between two ontologies 
whereas a GG-mediator may specify a process or data transformation between two 
goals. 

 
Classification Library. 
The classification framework that we use and extend for our work is a library of ge-
neric, reusable components developed within the European project IBROW [9].  Its 
purpose is to support the specification of classification problem solvers. The basic 
structure is the UPML framework [4], on which WSMO is based. The library has 
been specified in the OCML modelling language [8], and implemented in IRS-III [2]. 

Within the classification framework, we use the term ‘observables’ to refer to the 
known facts we have about the object (or event, or phenomenon) that we want to clas-
sify. Each observable is characterized as a pair of the form (f, v), where f is a feature 
of the unknown object and v is its value. Here, we take a very generic viewpoint on 
the notion of feature. By feature, we mean anything which can be used to characterize 
an object, such as a feature which can be directly observed, or derived by inference. 
As is common when characterizing classification problems - see, e.g., [19], we as-
sume that each feature of an observable can only have one value. This assumption is 
only for convenience and does not restrict the scope of the model. 

The solution space specifies a set of predefined classes (solutions) under which an 
unknown object may fall. A solution itself can be described as a finite set of feature 
specifications, which is a pair of the form (f, c), where f is a feature and c specifies a 
condition on the values that the feature can take. Thus, we can say that an observable 
(f, v) matches a feature specification (f, c) if v satisfies the condition c. 

As we have seen, generally speaking, classification can be characterized as the 
problem of explaining observables in terms of predefined solutions. To assess the ex-
planation power of a solution with respect to a set of observables we need to match 
the specification of the observables with that of a solution. Given a solution, sol: 
((fsol1, c1).....(fsolm, cm)), and a set of observables, obs: ((fob1, v1).....(fobn, vn)), four cases 
are possible when trying to match them: 

• A feature, say fj, is inconsistent if (fj, vj) ∈ obs, (fj, cj) ∈ sol and vj does not 
satisfy cj; 

• A feature, say fj, is explained if (fj, vj) ∈ obs, (fj, cj) ∈ sol and vj satisfies cj; 
• A feature, say fj, is unexplained if (fj, vj) ∈ obs  but fj is not a feature of sol; 
• A feature, say fj, is missing if (fj, cj) ∈ sol but fj is not a feature of obs. 



Given these four cases, it is possible to envisage different solution criteria. For in-
stance, we may accept any solution, which explains some data and is not inconsistent 
with any data. This criterion is called positive coverage [14]. Alternatively, we may 
require a complete coverage - i.e., a solution is acceptable if and only if it explains all 
data and is not inconsistent with any data. Thus, the specification of a particular clas-
sification task needs to include a solution (admissibility) criterion. This in turn relies 
on a match criterion, i.e., a way of measuring the degree of matching between candi-
date solutions and a set of observables. By default, our library provides a match crite-
rion based on the aforementioned model. That is, a match score between a solution 
candidate and a set of observables has the form (I, E, U, M), where I denotes the set of 
inconsistent features, E the set of explained features, U the set of unexplained features 
and M the set of missing features. Of course, users of the library are free to specify 
and make use of alternative criteria.  

In many situations, specifying the conditions under which a candidate solution is 
indeed a satisfactory solution is not enough. In some cases, we may be looking for the 
best solution, rather than for any admissible one. In these cases we need to have a 
mechanism for comparing match scores and this comparison mechanism becomes 
then part of the specification of the match criterion. By default, our library includes 
the following score comparison criterion. 

Given two scores, S1 = (i1, e1, u1, m1) and S2 = (i2, e2, u2, m2), we say that S2 is a 
better score than S1 if and only if: 

(i2 < i1) ∨ 
(i2 = i1 ∧  e1 < e2) ∨ 
(i2 = i1  ∧  e2 = e1 ∧  u2 < u1) ∨ 
(i2 = i1 ∧ e2 = e1 ∧ u2 = u1 ∧  m1 < m2) 
In the notation above xi < xj indicates that the set xi contains less elements than the 

set xj. 
In conclusion, our analysis characterizes classification tasks in terms of the follow-

ing concepts: observables, solutions, match criteria, and solution criteria. 
 
Trust Approaches. 
Since trust can have different meaning in different contexts, several specifications can 
be found in literature. We can classify existing models into the following three main 
approaches: 

• Policy-based. Policies are a set of rules that specify the conditions to disclose 
own resources; 

• Reputation based. Reputation based approaches make use of rating coming 
from other agents or a central engine, by heuristic evaluations; 

• Trusted Third Party-based (TTP). Trusted Third Party based models use an 
external, trusted, entity that evaluates trust. 

These general approaches can be refined and/or combined in order to build a con-
crete trust establishment solution that can be deployed in a real system.  

Many models [11, 15] formulate trust policies in semantic Web services by secu-
rity statements, such as confidentiality, authorization, authentication. W3C Web ser-
vice architecture [18] recommendations base trust policies on security consideration, 
even if the way to disclose their security policies is still not clear.  
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Some policy-based models rely on a TTP, which works as a repository of service 
description and policies [21] and meanwhile as an external matchmaker that evaluates 
service trustworthiness according to given algorithms.  

Reputation-based models reuse concepts and approaches taken from Web-based 
social networks. In SWS as well as in social networks, trust is a central issue. In both 
the cases, interactions take place whenever there is trustworthiness. The idea is that 
involved participants express their opinion on other participants, by means of a shared 
vocabulary. Several algorithms for trust propagation and different metrics have been 
defined, most of them are more generically Quality of service (QoS) based [7; 17], 
since they consider the service ability the main trust statement. 

3 Our Approach 

We propose a formal approach for managing trust among semantic Web services, 
based on two ontologies: WSMO and the classification task ontology, both introduced 
in Section 2. We build an ontology - named Web Service Trust-management Ontol-
ogy (WSTO) - that reuses the main concept of those ontologies, and extends them, for 
supporting SWS trust management. In our model, user preferences are the main ele-
ments on which Web service selection depends. Essentially, the user can decide 
which parameters should be considered in order to determine which class of Web ser-
vices are trusted, in a given context. We embed trust-based SWS selection in a classi-
fication framework, whereas the classification task ontology provides the overall 
methodology that we adopt for managing trust. For our purposes, we classify Web 
services according to both the user and Web services trust requirements and guaran-
tees.  

In WSTO, the key concepts are user, ws and goal, where user denotes the service 
requester and ws is the service provider. Following the basic WSMO notions, a goal 
represents the service requester’s desire or intention. The user usually expresses dif-
ferent trust requirements in achieving different goals. For example, she can be inter-
ested in data accuracy when retrieving timetable information, and security issues 
when disclosing her bank accounts. On the other hand, the ws aims to provide a set of 
trustworthy statements, in order to reassure the requester as well as to appear as at-
tractive as possible. 

The participants (ws and user) are associated with trust profiles, represented in 
WSTO by the class trust-participant-profile. A profile is composed of a set of trust 
requirements and guarantees. Trust-guarantee represents observables, pairs of feature 
and corresponding value (f, v), while trust-requirement represents candidate solutions, 
pairs of feature and condition (f, c). 

We distinguish three logical elements in trust requirements: (i) a set of candidate 
solutions for expressing conditions on guarantees promised by the relevant parties; (ii) 
a candidate solution for requesting their reliability; and, (iii) a candidate solution for 
requesting their reputation evaluation. In a participant profile, the three elements are 
optional; choice depends strictly on the participant preferences in matter of trust. 

In turn, the participant trust guarantees have three components: (i) a set of observ-
ables for representing the promised trust guarantees; (ii) an observable corresponding 



to the evaluation of the participant reliability; and, (iii) an observable for representing 
the reputation level of the participant. Whereas the promised trust guarantees are a set 
of promised values stated by the participant - such as (execution-time, 0.9) and (data-
freshness, 0.8) - reliability and reputation guarantees are computed on-the-fly within 
dedicated execution environments (IRS-III in our use case, see Section 5). As men-
tioned earlier, a participant profile is composed of requirements as well as guarantees. 
For example, a Web service may expose high data-freshness and strong confidential-
ity as guarantees. Moreover, the same Web service may define security requirements, 
such as conditions under which a service requester can access it.  

Given observables and conditions, a classification criterion is now necessary to 
classify Web services and find the appropriate class that addresses both user and Web 
service requirements and guarantees. The classification match criterion we apply is 
the one described in Section 2, although other classification criteria can be easily rep-
resented in WSTO.  

As solution admissibility criteria, we can apply complete coverage and positive 
coverage. The former demands that all requirements of the interaction have to be sat-
isfied; the latter accepts that some requirements are fulfilled and no inconsistencies 
exist. Our classification library implements two different classification methods: sin-
gle-solution-classification, and optimal-classification. The former implements a hill 
climbing algorithm with backtracking to find a suitable solution; the latter executes an 
exhaustive search for an optimal solution. We make use of the optimal-classification-
task and redefine it as WSMO goal1, optimal-classification-goal, whose participant-
profiles and trusted-ws represent the pre-conditions and post-conditions of the goal, 
respectively. 

Notice that the proposed model is comprehensive of all trust approaches listed in 
the previous section. In fact, it embeds a policy-based trust management, since the in-
teracting participants express their trust policies in their – semantically described – 
profiles, while the adopted SWS broker will behave as a TTP by storing participant 
profiles and reasoning on them. Moreover, the reputation module enables a WS selec-
tion based also on reputation ontological statements. 

4 The Formal Model 

This section provides the formal definition of trust we adopt in our approach, as well 
as its semantics. Trust is a binary evaluation of trustworthiness: “trust” or “distrust”. 
Whenever conditions for trustworthiness are established, the interaction between par-
ticipants occurs; otherwise, it is not possible.   

The trustworthiness  that a user u perceives towards a Web service ws, 
when she invokes a goal g, is given by the expression: 

(wsT g
u )

( ) ( ) ( )( )ws,uPwsT gg
g

u ΩΨ=  

Ψ is a classification operator, that provides a class of Web services  matching the 
user’s trust requirements, according to the match criterion presented in Section 3. If 

                                                           
1 WSMO goals can be seen as an evolution of UPML tasks. 
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trust requirements do not meet any Web service trust guarantees, Ψ returns a null 
value. This means that no trusted communication can occur.   

Trust as perceived by the user u, can be either strong or weak. It is strong when the 
operator Ψ classifies Web services by adopting complete coverage as solution ad-
missibility criterion. When the criterion selected is positive coverage, trust is regarded 
as weak. We did consider using two different operators - sΨ for strong trust, and 

wΨ for weak trust - however, we decided against this in order to increase the readabil-
ity of our notations. Without losing generality, in the rest of this section, we assume 
only strong trust.   

( )uPg  is a function which selects a profile from the set of trust profiles associated 
(provided or accepted) with the user, according to the current goal. As mentioned ear-
lier, a user can have different trust preferences in different contexts. The current-
selected-profile is used to associate a trust-profile with a goal, according to the user’s 
ontological statements.  

The user trust profile suitable for a given goal is represented by a list of user re-
quirements: (f1, c1), .., (fn, cn), (frL,crL), (fr, cr). The user requirements (f1, c1), .., (fn, cn) 
are conditions on WS promised guarantees. They can involve QoS statements, or con-
cern security issues. Moreover, the user could be interested to know more about the 
reputation and the reliability of the Web services she will interact with. The require-
ments (frL, crL) and (fr, cr) respectively express conditions on reliability and other user 
preferences concerning Web service behaviors.   

Given a goal g, (wsg )Ω  is a complex operator that provides information about 
the WS profile, where ws satisfies g. The operator provides thus (i) the guarantees 
promised by the WS, (ii) a record of WS monitored behavior, and (iii) WS behavior 
as evaluated by other users. For conformity, we also refer to components (ii) and (iii) 
as guarantees, however they are automatically calculated by IRS-III, and are not 
strictly speaking guarantees. We should also note that, in principle, ws reputation and 
its historical evaluation may not always reassure the user.      

More formally, gΩ  has three components:  

( )g
r

g
h

g
pg ,, ΠΠΠΩ =  

Given a Web service ws, satisfying a goal g, ( )wsg
pΠ  supplies the component of 

the ws profile published by ws itself. The ws guarantees, are pairs (feature, value): 
{(fp1, vp1), ..., (fpm, vpm)}. The published guarantees can involve QoS parameters, certi-
ficated security parameters issued by Certification Authorities, or any ontological 
statements certificated by TTP or simply provided by the WS for trust assurance pur-
poses. The values vp1,…, vpm are normalized and homogenized. They are normalized 
to non-negative real numbers in the range [0,1]. Moreover, we assume that they are 
homogeneously scaled, where higher values correspond to higher performance. For 
example, higher performance for the parameter “execution time” would normally be 
indicated by a smaller value, but we normalize to a scale where a higher value indi-
cates better performance. We are aware that this process can increase complexity, es-
pecially for those guarantees related to security issues, however, describing the 



normalization process is out of the scope of our current work. For alleviating the dif-
ficulty of representing numerical normalized values, we use a number of previously 
described heuristics.    

(wsg
hΠ ) assigns the value vrL to the ws reliability frL, by stating the observable 

(frL, vrL). Reliability is a measure of how the Web service behaviour conforms with its 
related guarantees. Let Fp= {fp1,…, fpm} be the set of features with associated values of 
guarantees, and Fh= {fh1,…,fhk} the set of the monitored features for ws. We define Fph 
= Fp ∩ Fh= {f1,…,fj}, as the set of both promised and monitored features for ws. 
Whenever a feature is monitored more than once, we consider only the last observed, 
because we assume that Web service performance can alter, and the last value is 
closer to its predicted behavior.    

We calculate the feature conformance, as defined by [16]. For every feature fi be-
longing to Fph with 1 ≤  i ≤ j, we determine the conformance of fi by value 

p
i

p
i

h
i

v
vv −

=δ  , where  is the normalized monitored value associated to fh
iv i, and 

is its normalized promised value, for the Web service ws.  p
iv
The conformance value δi falls in the range [-1, 1]. It is a negative value when the 

promised value is better than the monitored one. It holds 0 when = , i.e., the 
promised value corresponds to the monitored one. Finally, when the Web service be-
haviour around the feature f

p
iv h

iv

i is better than promised, δi is a positive value. 
If δi ≥ 0 for every 1 ≤  i ≤ j, then ( )wsg

hΠ  will have the value 1, the maximum 
value for reliability, otherwise, reliability is represented by the normalized arithmetic 
average of each feature’s conformance: 

( )
j

vws

j

1i
i

rL
g

h

∑
===
δ

Π
 

Web service reliability, evaluated through the operator ( )wsg
hΠ , provides a value 

for the feature frL, where the observable (frL, vrL) is a component of the ws profile. vrL 
is a guarantee that will be automatically generated by the adopted SWS broker by 
processing the ws published and monitored guarantees. For example, IRS - our refer-
ence SWS broker - automatically logs all interactions with Web services [13] and thus 
reliability is straightforward to compute.   

The operator  provides a measure of Web service reputation. Users who 
have previously interacted with WS can supply ontological statements for describing 
perceived trustworthiness. These statements are observables - pairs (feature, value) - 
as annotated by users.  

(wsg
rΠ )

We introduce a reputation evaluation for making our model as context/user ori-
ented as possible, because some users may be interested in the opinions that come 
from previous requesters. Nevertheless, we do not intend to emphasize this aspect of 
our trust evaluation because reputation statements may derive from malicious users 
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interested in providing false evaluations for a variety of reasons. Therefore, we con-
sider only reputation statements that have high conformance.   

Let Fr = {f1,…frr} be a set of features, and {(fi, vi1).., {(fi, vij)} the corresponding ws 
observables for the feature fi, with 1 ≤  i ≤ rr, respectively reputed by the users {ui1,.. 
uij}. We consider the reputation around the feature fi can be estimated if and only if 
the standard deviation SDi from the average of the normalized values {vi1.., vij} is 
lower than a given threshold D.  

We can now define  as the average trustworthiness perceived by the users 
towards the Web service ws: 

(wsg
rΠ )

( )
∑

∑

=

=== rr

1i
i

rr

1i
ii

r
g

r

w

vw
vwsΠ  

Where wi is a weight that excludes the reputation statements that cannot be esti-
mated. It can hold {0,1}: wi = 1 when the SDi ≤ D, otherwise its value is 0. The value 
vr is assigned to the feature fr, where the observable (fr, vr) is a component of the ws 
profile, computed within IRS-III. 

Having extracted the participant profiles, the operator Ψ classifies Web services, 
i.e., it solves the problem of finding a class that best explains a set of known Web ser-
vice guarantees, according to user trust requirements. The output is binary: the WS 
class exists or not, which corresponds to the trust or distrust value for the func-
tion . ( )wsT g

u

5 Case Study: A Trusted Virtual Travel Agent 

The proposed formal model has been implemented within an existing SWS execution 
environment: IRS-III [2]. The reasons for adopting IRS-III are the following: firstly, 
this framework has been designed and built within our institution; secondly, WSMO 
(Section 2) has been incorporated and extended as the core IRS-III epistemological 
framework; finally, the classification library we use and extend (Section 3) is repre-
sented in OCML [8], the ontological representation language used by IRS-III. 

IRS-III is a platform and a broker for developing and executing SWS. By defini-
tion, a broker is an entity which mediates between two parties and IRS-III mediates 
between a service requester and one or more service providers. A core design princi-
ple for IRS-III is to support capability-based invocation. A client sends a request 
which captures a desired outcome or goal and, using a set of semantic Web service 
descriptions, IRS-III will: a) discover potentially relevant Web services; b) select the 
set of Web services which best fit the incoming request; c) mediate any mismatches at 
the data, ontological or business process level; and d) invoke the selected Web ser-
vices whilst adhering to any data, control flow and Web service invocation con-
straints. Additionally, IRS-III supports the SWS developer at design time by 
providing a set of tools for defining, editing and managing a library of semantic de-
scriptions and also for grounding the descriptions to either a standard Web service 



with a WSDL description, a Web application available through an HTTP GET re-
quest, or code written in a standard programming language (currently Java and Com-
mon Lisp). 

In our work, we implemented a new IRS-III module that exploits WSTO and thus 
enhances the current functional-based (i.e. based on pre and post conditions, assump-
tion and effect descriptions) selection mechanism of IRS-III with a trust-based selec-
tion mechanism. Given several Web services, semantically annotated in IRS-III and 
all with the same functional capability, but different trust guarantees, the class of Web 
services selected will be the one that matches closest with the user trust requirements, 
according to the classification mechanism introduced in the previous section. 

As a test-bed for our module, we deployed a prototype application (the Virtual 
Travel Agency) and compared the existing version of IRS-III (non trusted) with the 
improved one (trusted). In the proposed scenario, IRS-III acts as SWS execution envi-
ronment as well as TTP, by storing participant profiles and reasoning on them. The 
current prototype considers participant observables and needs, but it does not include 
the reputation module and the historical monitoring. The prototype is implemented in 
OCML and Lisp. The goal is to find the train timetable, at any date, between two 
European cities. Origin and destination cities have to belong to the same country 
(European countries involved in our prototype are: Germany, Austria, France and 
England). The client that uses this application in IRS-III publishes her trust-profile, 
with trust requirements and/or trust guarantees.  In our prototype, we provide three 
different user profiles and three different Web services, able to satisfy the user goal. 
User profiles are expressed through trust requirements, without trust guarantees. All 
user requirements are performed in terms of security parameters: encryption-
algorithm, certification-authority and certification-authority-country. Every user ex-
presses a qualitative level of preference for every parameter. 

 
USER4 
(def-class trust-profile-USER4 (trust-profile) 
  ((has-trust-guarantee :type guarantee-USER4) 
       (has-trust-requirement :type requirement-USER4))) 
 
(def-class requirement-USER4 (security-requirement) 
  ((encryption-algorithm :value high) 
       (certification-authority :value medium) 
       (certification-authority-country :value medium))) 
 
USER5 
........  
(def-class requirement-USER5 (security-requirement) 
  ((encryption-algorithm :value medium) 
   (certification-authority :value low) 
   (certification-authority-country :value low))) 
 
USER6 
........  
(def-class requirement-USER6 (security-requirement) 
  ((encryption-algorithm :value low) 
       (certification-authority :value high) 
       (certification-authority-country :value high))) 

 

Listing 1 User Profiles 



A Formal Model for Classifying Trusted Semantic Web Services 

For instance, the user4 would like to interact with a Web service that provides a 
high security level in terms of encryption algorithm, but she accepts medium value for 
Certification Authority (CA) and CA country. Representing user requirements in a 
qualitative way seems to be more user-friendly. Heuristics are necessary for express-
ing quantitative representations in qualitative form. The listing below is an example of 
heuristic. 

 
ENCRYPTION-ALGORITHM HEURISTIC 
(def-instanceencryption-algorithm-abstractor abstractor             
((has-body '(lambda (?obs)   
             (in-environment  
               ((?v . (observables-feature-value ?obs 
                                   'encryption-algorithm))) 
               (cond ((== ?v DES)  
                      (list-of 'encryption-algorithm 'high                
                              (list-of (list-of 
                              'encryption-algorithm ?v))))                
                     ((== ?v AES) 
                      (list-of 'encryption-algorithm 'medium  
                               (list-of (list-of  
                               'encryption-algorithm ?v))))       
                                   
                     ((== ?v RSA) 
                      (list-of 'encryption-algorithm 'low  
                                (list-of (list-of  
                              'encryption-algorithm ?v)))))))) 

Listing 2 Encryption Algorithm Heuristic 

The heuristic encryption-algorithm-abstractor establishes that whenever the en-
cryption algorithm adopted by a Web service provider is like DES, then its security 
level is considered high. Whenever both User and Web service describe their profiles, 
they implicitly agree with the qualitative evaluation expressed by the heuristic. In 
turn, whenever the Web service provider makes use of an algorithm like AES, accord-
ing to the heuristic in Listing 2, its encryption ability is deemed medium, otherwise, if 
the adopted algorithm is like RSA, the security level is low. Other heuristics provide 
qualitative evaluations of CAs, and CA countries. For instance, security level of 
globalsign-austria is retained high, conversely German CAs are considered medium-
secure. 

The user can apply these heuristics, or define her own, sharing her expertise and 
knowledge with other users. Alternatively, the user can even express her requirements 
in a precise/quantitative way, by specifying the exact values expected from Web ser-
vice guarantees, for example, the CA issuing security token has to be VeriSign. Given 
several Web services, semantically described in IRS-III, all with the same capability, 
but different trust profiles, the class of Web service selected will be the one that 
matches closest with the user trust profile.  

We developed a user-friendly Web application to test our implementation, which is 
available at http://lhdl.open.ac.uk:8080/trusted-travel/trusted-query. 

The snapshot in Figure 1 shows the Web application interface. The user who would 
like to know train timetable between two European cities enters the desired city 
names and date. The user owns a trust profile associated to her name: dinar is in-
stance of user4 trust profile, vanessa of user5, stefania of user6.   

 



 
Figure 1 Web Application 

Whenever the application starts, IRS-III recognizes from the user name, the trust 
user profile. In the prototype, the requirements expressed by the user are treated as 
candidate solutions within the classification goal.  

The class of Web services whose trust guarantees best match with user require-
ments is selected. As we applied the complete coverage criterion, the match is strict, 
that means every user requirement is explained (matches with a Web service trust 
guarantee) and none is inconsistent. 

 

 
Figure 2 Web Application Output of the user “dinar” Invocation 

Figure 2 is a snapshot of the resulted trusted VTA booking. The application returns 
the list of Web services able to satisfy the user goal, and that one invoked, which 
matches with dinar trust requirements. It follows the Web service output, the re-
quested timetable. The application can easily be tested with the other user instances 
implemented, vanessa and stefania. It can be noticed that vanessa trust profile 
matches with Web service class get-train-timetable-service-T3, while stefania with 
get-train-timetable-service-T2. 
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The “non-trusted” based version of the application is available at 
http://lhdl.open.ac.uk:8080/trusted-travel/untrusted-query. This application imple-
ments a virtual travel agent based on the standard IRS-III goal invocation method. 
The output returns only the train timetable requested, without any trust-based selec-
tion. 

6 Related Work 

A number of current approaches model social aspects of trust [6], while some re-
cent efforts in the last few years concern service-oriented views of trust [1]. However, 
few approaches provide methodologies for managing trust in a SWS, and none com-
prehensively incorporate all possible approaches of trust (policy, reputation TTP), as 
we do in WSTO.  

The work proposed by Vu and his research group [16,,17], who use WSMX [20] as 
an execution environment, is closely related to the work reported here. Vu et al. [16, 
17] propose a methodology for enabling a QoS-based SWS discovery and selection, 
with the application of a trust and reputation management method. Their approach 
yields high-quality results, even under behaviour that involves cheating. With respect 
to their work, the methodology we propose is less accurate in terms of service behav-
iour prediction. However, their algorithm is wholly founded on reputation mecha-
nisms, and is therefore not suitable for managing policy-based trust assumptions. 
Currently, policy-based trust mainly considers access control decisions via digital 
credentials. Our framework, by enabling participants to declare general ontological 
statements for guarantees and requirements, is also able to accommodate a policy-
based trust framework.         

Olmedilla et al. [11] propose a methodology for trust negotiation in SWS. They 
employ PeerTrust [10], a policy and trust negotiation language, for establishing if 
trust exists between a service requester and provider. The main aspect, which distin-
guishes their methodology from ours, is that they assume that trust is solely based on 
policy. They do not propose any mechanism for managing reputation or monitoring 
past service behaviour, as we do. Similar to our approach, they use WSMO as the un-
derlying epistemology. Moreover, they assume delegation to a centralized trust 
matchmaker, where the participants disclose policies. Similarly, in our approach, we 
assume that IRS-III plays the role of trust matchmaker. Furthermore, they also ad-
dress negotiation, which is an important issue in SWS interaction. We do not propose 
a formal negotiation mechanism here, but, as both requester and provider disclose 
their guarantees as credentials within IRS-III, we are able to automatically enable an 
implicit negotiation process.        

There are other approaches for managing trust in SWS which are less closely re-
lated to ours such as KAoS [15]. Within KAoS a set of platform-independent services 
that enable the definition of policies ensuring the adequate predictability and control-
lability of both agents and traditional distributed systems is proposed. Even though 
they present a dynamic framework, and recognize trust management as a challenge 
for policy management, the framework is not specifically tailored to trust manage-
ment in SWS. 



7 Conclusions and Future Work 

In this paper, we have presented a formal model for managing trust in SWS and have 
envisaged Web service selection and invocation as a classification problem, where the 
solution takes the form of a class of Web services matching participating trust pro-
files. Embodied within the trust profiles are the participant priorities with respect to 
trust, which can be related to reputation, credentials, or actual monitored behavior. 
Our definition of trust is described through a binary measure: whenever participant 
trust profiles match, a trusted interaction can occur, otherwise trusted interaction is 
deemed to not being feasible. We have adopted WSMO as underlying epistemology 
for WS description, and used IRS-III as an execution environment. 

Trust has different meanings within different contexts: trust can be based on ser-
vice ability or on reliability. In other contexts, trust can be related to reputation or 
delegated to TTP evaluations. The main contribution of our approach is to provide a 
framework that enables a comprehensive range of trust models to be captured. In fact, 
the framework can easily capture the multiple trust parameters that characterize a spe-
cific scenario, by simply specializing the WSTO reference ontology. Future work will 
extend our implementation to incorporate a comprehensive management suite for WS 
reputation and reliability. Additionally, we also plan to import a range of sophisti-
cated reputation algorithms, and to improve the monitoring component.      
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