3-Level Service Composition and Cashew:

A Model for Orchestration and Choreography
in Semantic Web Services

Barry Norton and Carlos Pedrinaci

Knowledge Media Institute, Centre for Research in Computing,
Open University, Milton Keynes, UK
{ b.j.norton | c.pedrinaci } @open.ac.uk

Abstract. There are two types of behavioural model in the WSMO
semantic description of services: an orchestration and a choreography,
together called the interface. While an orchestration defines a service’s
behaviour as a composition of existing parts, a choreography is intended
to document the conversation of messages exchanged with a single client.
In this paper we present a three-level model for behavioural descriptions,
and how the Cashew workflow model fits into this, building on existing
work in, and establishing connections with, semantic web services, work-
flow, and software engineering design.

1 Introduction

Cashew is an ontological model for workflow-oriented descriptions of semantic
web service interfaces, descended from an earlier generalised representation of
the OWL-S process model [10], called CASheW-S [22]. The definition of Cashew
has extended, from this previous work, to accomodate WSMO [8] in three ways:

— whereas previously only orchestrations were described in workflow terms,
with primitive choreographies being implicitly described via automata, now
choreographies are also given a high-level description;

— whereas previously the ‘unit of composition” was an operation on a service,
now orchestrations compose goals, and choreographies compose operations;

— whereas previously dataflow connections were simple, specifying only perfor-
mance outputs as sources and performance inputs as targets, now these are
specified as types of WSMO mediators.

As well as this alliance with WSMO, the redesign of Cashew has attempted
to build stronger links with two other communities. Firstly, the workflow control
forms used have been re-examined in the context of ‘workflow patterns’, where
the aim is to standardise the vocabulary for workflow in business process man-
agement [26]. Secondly, for the visual representation of workflow models we have
looked at UML, which aims at a standard language for software design [17]. We
consider all of these as background work in the following section, propose our
language in Section 2, consider its representation in UML in Section 3 and then
conclude and consider future work in Section 4.

1.1 OWL-S

The process model in OWL-S is an algebra of workflows, called processes, where
the atomic processes are grounded to operations on web services. Although this
has been called ‘service composition’, we have previously pointed out [20] that
this is really a model of ‘operation composition’, i.e. a composite process is used
to define a single operation, not a general service with multiple operations, and
within that definition, the attachment to services of operations is not considered.

The gap between services and operations widens further when we consider
statefulness of interaction in the service interface. When we allow that there is
a ‘protocol’ governing the order of use of operations of a service in any given
session, it becomes important that we consider the notions of service and session,
and also that we give a semantic model to this protocol.

It is for these reasons that we consider that the OWL-S process model is only
a useful model for orchestrations formed over stateless services, but we shall see
that it is deficient when we must deal with services with protocols.

1.2 WSMO

The fragment of the WSMO meta-model [8] we deal with is represented, as a
UML class diagram, in Figure 1. The central concepts, duly shown centrally, are
‘web service’, ‘mediator’ and ‘goal’.

=
hasMecdiationService F’IESM ediationSerice
iator }\7
1

é\ 0.1 0.1
1
ThasSource, hasTarget} ThasSource, hasTarget}

Fig. 1. (Partial) WSMO Meta-model

An instance of ‘web service’ is the basis for a semantic description of a web
service, divided into two parts: the ‘capability’, not shown or considered in this
paper, contains the functional description of the service; and the ‘interface’,
which contains behavioural descriptions.

Following the connections from interface, we see that each instance here can
contain an orchestration and/or a choreography. We also see that the description
of a goal may contain interfaces, so that goals are more than simply first class
representations of what have been called ‘service templates’; i.e. only functional
descriptions of service requirements, following the initial publication of OWL-S.

So far in WSMO, the formal basis of orchestration and choreography in the
form of abstract state machines (ASMs) [2] has been prescribed. Thereafter use
of ASM choreographies to define the protocol that a client must use in order to
consume a service has been defined [9] and exemplified [11]. The use of ASMs
for orchestration is less developed [7].

Even the restricted two-party view on the definition of choreography that
WSMO takes! is open to refinement. The DIP project? has proposed [15] that
the distinction that the IRS [4], one of two DIP implementations of the WSMO
model, makes between service- and client-choreographies [5] should be formalised
in WSMO. The first difference between the two is the viewpoint: in a ser-
vice choreography, the service documents which communications are offered to
clients; in a client choreography, the client documents which communications
they offer and accept in return. Although to some degree orthogonal, the sec-
ond difference is that a client choreography will be finite and contain only those
communications intended to achieve some goal, whereas the service choreography
will document all allowed interactions with the service, which may be infinite.

The latter form, which DIP calls service choreography, is what is documented
in the Amazon Case Study [11], and shows an infinite behavioural model where
the client can interact with the Amazon service by searching at any point, and
interleave this with logging in, logging out and making purchases. An example
of a client choreography might connect a goal ‘buy the most recent edition of
book z by author gy’ to this service via the refined conversation consisting of
search, followed by log-in, purchase and log-out. Due to this goal-orientation
of client choreographies, the meta-model in this paper will suggest, as detailed
in Section 2, that client choreographies are actually choreographies attached to
wg-mediators, a specialisation of mediators that, as shown in Figure 1, are used
to attach goals to services.

The meta-model proposed in this paper will also follow IRS, in turn following
the literature in problem-solving methods, in insisting that the choreographies
of goals are always ‘one-shot’, i.e. that in expressing the desire to achieve a goal,
a user does not have to worry about ‘control flow’, or complex interaction, and
merely present some inputs and waits for an output. We will also follow the IRS
in viewing orchestrations as a composition of goals, i.e. the units of composition
in an orchestration will be abstracted to this level, and goal-based invocation
will be used to match these goals to service at run-time, which may involve the
use of discovery. In this way, the use of several operations of the same service can
be abstracted into a goal that may then be considered atomic for composition.

! Which can be contrasted with the multi-party viewpoint of W3C [13], but also seen
as a projection on this.
2 http://dip.semanticweb.org

1.3 Workflow Patterns

‘Workflow Patterns’ are the result of a long-running project to formalise the
possible variations between workflow systems, and provide a common vocabulary
to compare these [26]. It is telling that, when presented®, one of the examples
given of hidden differences between workflow systems in the early days was the
distinction between, in workflow patterns terms, ‘XOR’ and ‘Deferred Choice’. In
general terms, when asked whether their systems supported a choice operator,
vendors would answer ‘yes’. On the other hand, given the vocabulary to ask
whether systems supported choices resolved internally by the engine and choices
resolved externally by the outcome of component tasks, the answer was too
often only ‘yes’ one or the other, rather than both. In fact, this very example
is another reason for the deficiency of OWL-S in the presence of choreography,
since deferred choice is not supported by OWL-S. We shall show the extension
to, and use of, this form of choice operator in the Cashew model.

1.4 UML

The UML is an ongoing effort by the Object Management Group 4, standardised
by ISO [17], to provide a language for software engineering design via diagrams
describing both the static and dynamic characteristics of software artifacts. Of
particular relevance are Activity Diagrams which, it has been suggested, are
expressive enough to represent visually many of the Workflow Patterns [6] [27].

2 The Cashew Model

An extended ‘3-level’ WSMO meta-model, as proposed in the DIP project, is
diagrammed in Figure 2. As sketched above, the concepts of both orchestration
and choreography are abstracted, so that ASMs form just one way to represent
these. The upper two levels represent a high-level view on these behavioural
models, one oriented towards first-class workflow features and another towards
diagramming for human inspection. In the DIP project these levels are filled by
the Cashew workflow language and by UML Activity Diagrams. These are not
the only possibilities, however, and in Section 4 we discuss others.

The lower half of the diagram documents a proposed extension to WSMO
that has already been abstracted out from the DIP work and proposed to the
working group [21]. The notion of ‘Performance’, due to OWL-S, allows us to
hierarchically compose workflows from performances of workflows, so that each
defined workflow can be reused in other contexts than where it was defined, and
each instance is given a different identifier in context.

The details of the Activity Diagram meta-model — called ‘ADQO’, the Activ-
ity Diagram Ontology — are not reproduced here; the reader is directed to the
annex [12] of the relevant DIP deliverables.

3 Wil van der Aalst’s ‘Life After BPEL?’, presented as keynote at WS-FM’05
4 http://www.omg.org/technology/documents/formal /uml.htm

ashediationService

hasMediations ervice

1

{hasSource, hasTarget} {hasSource, hasTarget}

hasCliertChoreography

-ﬂ

performs

1
COMPpOosES

hasDatafiow

hasSoures

{hasSource, hasTarget} thasSource, hasTarget}

Fig. 2. Extended WSMO Meta-model

B
—
N
—
=

Fig. 3. Cashew Workflow Meta-model

The details of the Cashew workflow meta-model, extending the new concept
Workflow, are diagrammed in Figure 3. The workflow operators are divided into
three types: ‘Sequential’ depends on an ordered list of performances; ‘Concurrent’
— called ‘Split-Join’ in OWL-S — and Interleaved — called ‘Any-Order’ in
OWL-S, and renamed as a shortened form of the Workflow Pattern ‘Interleaved
Parallel Routing” — both rely on an unordered set of performances; choices
abstract over once-off choices and loops over exactly two performances.

The subset of operators to which ‘Internal Choice’ is a superconcept repre-
sent exactly those in OWL-S — with ‘If-Then-Else’ renamed after the Workflow
Pattern ‘XOR’ — but substituting the WMSO concept ‘Axiom’ for the condi-
tion that the engine will evaluate to resolve the choice. In the case of ‘XOR’ the
condition will only be evaluated once to chose between the left and right perfor-
mance; in the case of ‘While” and ‘Until’, after the left performance is evaluated,
which will happen without evaluating the condition in the first instance with
‘Until’, the condition will be evaluated again.

In our previous semantics for OWL-S [22], we paid careful attention to the
‘Any-Order’ operator, elided in other semantics [1]. In the informal semantics
published in the specification [10] it is stated that only one performance at a
time will be executed, and that the performance to be executed at run-time
will depend on availability of input data, since component performances may
communicate to supply one another with data. This data-driven characteristic is
in contrast to the control-driven ‘flow’ processes, due to WSFL [19], in BPEL [16].

In the spirit of this data-driven approach, since this happens to coincide with
our own previous work [23], we offered an alternative semantics for ‘Choose-
One’, where a non-deterministic choice would be made only between the ‘ready’
branches, i.e. those whose input has been provided. In the case that all branches

are ready, this is an equivalent non-deterministic choice. In the case that dif-
ferent outputs can be produced, e.g. by the invocation of an operation — not
considered in OWL-S, but expected in WSMO — this allows the choice to be
resolved externally between subsequent performances depending on the differ-
ent messages. Furthermore, given the extension to explicit message receipts from
the client, having extended the types of performance, this becomes the ‘classical’
deferred choice workflow pattern, which we therefore claim to generalise on, and
name our operator after. We extend this ‘external choice’ to be able to decide
also loops, as shown in the remaining concepts shown in Figure 3.

3 Representing Cashew in UML

The alliance with workflow patterns allows a standard mapping from most parts
of Cashew directly into UML Activity Diagrams [27]. Rather than detail the
whole translation here, we concentrate on the distinction between XOR and
Deferred Choice discussed in the previous section.

For a XOR-type workflow between performances V and W, with axiom a, the
resulting diagram fragment is as shown in Figure 4. A performance of this work-
flow would connect in control flow at the ‘decision node’ (the upper diamond),
and connect it out at the ‘merge node’ (the lower diamond). It is an important
part of the translation that each stage defines these two points uniquely, in order
to be composable.

Fig. 4. XOR in UML Fig. 5. Deferred Choice in UML

The Deferred Choice-type workflow between performances V and W is shown
in Figure 5. Although this starts concurrently — the incoming control flow con-
nects to the ‘split node’ (the horizontal bar) — there is within an ‘interrupting
region’ (the dashed box) and each ‘interupting edge’ preempts the other.

This can be contrasted with the representation of a performance of a concur-
rent workflow over performances W1 .. Wn, shown in Figure 6, where there is
no interruptable region and the outgoing control flow resynchronises on a ‘join
node’, rather than the ‘merge node’ in Figure 5, so every thread must complete.

W part1

part2

Fig. 6. Concurrent in UML Fig. 8. Send in UML

In order to diagram the performance of sequential workflows, we simply create
a control flow arrow between the representation of each successive performance,
with the incoming control flow connecting to the first, and out-going to the last.

In order to define loops we allow the control flow to connect back to the ‘left’
performance via a ‘merge node’, after either a ‘decision node’ or an interuptable
region in the form of Figures 4 and 5 respectively.

In order to easily define dataflow, each send and receive performance is asso-
ciated with an ‘action’ with ‘pins’ to show the unpacked version of each message,
as shown in Figures 8 and 7. In this way, dataflow can be represented by con-
necting pins together with edges that UML calls ‘object flow edges’. In fact, in
WSMO terms, the dataflow edges represent mediators, as proposed in [3], and it
is up to the mediators to specify the relationship between the message and the
part needed, in the capability of their associated mediation goal or service, but
this is a diagrammatic convenience.

4 Conclusions and Further Work

In this paper we have shown a three-level representation of behavioural models
and how this is compatible with WSMO. We have shown how Cashew and the
UML can be fitted into this model, allowing a relationship to be established with
many existing communities. Finally, we have sketched how translation from a
Cashew workflow model to an Activity Diagram model can be carried out.

The key advantages of the three-level model are the ability to deal with ser-
vices with complex choreographies within orchestrations, and also to abstract
from the details of sessions with these services in a goal-oriented fashion. The
key advantages of Cashew are the ability to express the two kinds of choreogra-
phy necessary to do this, including the distinction between internal and external
choices which our example has shown is core to the WSMO notion of choreog-
raphy, and the ability to communicate with the practitioners and tools of other
communities, via the alliance with workflow patterns and UML diagrams.

Existing implementation involves an interpreter for Cashew in the IRS [4],
and an on-going implementation of translation from Cashew to UML and a

(partial) reverse-translation. Future work involves implementation of transla-
tions from Cashew and Activity Diagrams to Abstract State Machines, and
implementation of an orchestration engine based on Abstract State Machines in
WSMX [18], the open-source reference implementation for WSMO.

Further on-going work involves the creation of an extended WSML grammar
in which interfaces can be expressed in both Activity Diagrams and Cashew, as
well as ASMs, and the proposal of further parts of the three-level model, with
these concrete instances, to the WSMO/WSML Working Groups®.

Within the SUPER project® the intention is to find a synergy between busi-
ness process management and semantic web services. Early results in this project
suggest that a three-level model, where an upper diagram-oriented representa-
tion is based on event-driven process chains (EPCs) [25], a middle level on a
‘semanticised BPEL’ and the bottom-layer on SWS-oriented representation may
be useful. It is hoped that the three-level model here can be extended to express
this in WSMO-compatible terms

5 Acknowledgements

This work is supported by the DIP project, an Integrated Project (no. FP6 -
507483) supported by the European Union’s IST programme. We should like to
particularly acknowledge the contribution of the DIP partner ILOG, specifically
Laurent Henocque and Mathias Kleiner.

References

1. A. Ankolekar, F. Huch, and K. Sycara. Concurrent semantics for the web services
specification language DAML-S. In Proc. 5th Intl. Conf. on Coordination, volume
2315 of LNCS, 2002.

2. E. Borger and R. Stark. Abstract State Machines. Springer, 2003.

3. L. Cabral and J. Domingue. Mediation of semantic web services in IRS-III. In
Proc. Workshop on Mediation in Semantic Web Services (MEDIATE 2005), in
congunction with ICSOC 2005, 2005.

4. J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta. IRS-III: A platform
and infrastructure for creating WSMO-based semantic web services. In Proc. of
the Workshop on WSMO Implementations (WIW 2004), volume ISSN 1613-0073.
CEUR Workshop Proceedings, 2004.

5. J. Domingue, S. Galizia, and L. Cabral. Choreography in IRS-III: Coping with
heterogeneous interaction patterns. In Proc. 4th Intl. Semantic Web Conference
(ISWC 2005), number 3729 in LNCS, 2005.

6. M. Dumas and A. H. M. ter Hofstede. UML Activity Diagrams as a workflow
specification language. In Proc. 4th Intl. Conf. on the Unified Modeling Language
(UML), number 2185 in LNCS, 2001.

7. D. Roman et al. Orchestration in WSMO (working version).
http://www.wsmo.org/TR/d15/v0.1/, January 2005.

® http://www.wsmo.org/
6 http://super.semanticweb.org/

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

D. Roman et al. Web service modeling ontology WSMO v1.2.
http://www.wsmo.org/TR/d2/v1.2/, April 2005.

D. Roman et al Ontology-based choreography of wsmo services v0.3.
http://www.wsmo.org/TR/d14/v0.3/, May 2006.

David Martin et al OWL-S: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.1/overview/, 2004.

J. Kopecky et al. WSMO use case: Amazon e-commerce service vO0.1.
http://www.wsmo.org/TR/d3.4/v0.1/, December 2005.

M. Stollberg et al DIP interface description ontology.
http://dip.semanticweb.org/documents/DIO-Annex-to-D3.4-and-D3.5.pdf, Jan-

uary 2005. Annex to DIP Deliverables D3.4 and D3.5.

N. Kavantzas et al. Web services choreography description language v1.0.
http://www.w3.org/ TR /ws-cdl-10/, November 2005.

S. Bhiri et al. An orchestration and business process ontology.
http://dip.semanticweb.org/documents/D3.4.pdf, January 2005. DIP Deliver-
able D3.4.

S. Galizia et al An ontology for web service choreography.
http://dip.semanticweb.org/documents/D3-5.pdf, January 2005. DIP Deliver-
able D3.5.

S. Thatte et al. Business process execution language for web services version 1.1.
ftp://www6.software.ibm.com /software/developer/library /ws-bpel.pdf, 2003.

Object Management Group. UML 1.4.2 specification. Technical Report ISO/IEC
19501, ISO, 2005.

A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - a semantic
service-oriented architecture. In Proc. 4th Intl. Semantic Web Conference (ISWC
2005), number 3729 in LNCS, 2005.

F. Leymann. Web services flow language (WSFL 1.0). http://www-
3.ibm.com//software/solutions /webservices /pdf/WSFL.pdf, 2001.

B. Norton. Experiences with OWL-S, directions for service composition: The
Cashew position. In OWL: Experiences and Directions Workshop (co-located with
ESWC 2005), 2005. http://www.mindswap.org/OWLWorkshop/sub23.pdf.

B. Norton. Dataflow for orchestration in WSMO.
http://www.wsmo.org/TR/d15/d15.1, July 2006.

B. Norton, S. Foster, and A. Hughes. A compositional semantics for OWL-S. In
Proc. 2nd Intl. Workshop on Web Services and Formal Methods (WS-FM 05),
number 3670 in LNCS, Sept 2005.

B. Norton, G. Liittgen, and M. Mendler. A compositional semantic theory for
synchronous component-based design. In 14th Intl. Conference on Concurreny
Theory (CONCUR ’08), number 2761 in LNCS. Springer-Verlag, 2003.

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
Monitoring Web Service Composition. In Proceedings of the Workshop on Planning
and Scheduling for Web and Grid Services held in conjunction with ICAPS 2004,
Whistler, British Columbia, Canada, June 3-7, 2004.

W. M. P. van der Aalst. Formalization and verification of event-driven process
chains. Information & Software Technology, 41(10):636-650, 1999.

W. M. P. van der Aalst, A. H. M ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5-51, June 2003.

P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, and
N. Ruseell. Pattern-based analysis of UML activity diagrams. BETA Working
Paper Series WP 129, Eindhoven University of Technology, 2005.

